Что такое парообразование в физике определение

Испарение, кипение, конденсация

что такое парообразование в физике определение
Подробности Категория: Молекулярно-кинетическая теория 09.11.2014 21:08 14305

В жидком состоянии вещество может существовать в определённом интервале температур. При температуре, меньшей нижнего значения этого интервала, жидкость превращается в твёрдое вещество. А если значение температуры превысит верхнюю границу интервала, жидкость переходит в газообразное состояние.

Всё это мы можем наблюдать на примере воды. В жидком состоянии мы видим её в реках, озёрах, морях, океанах, водопроводном кране. Твёрдое состояние воды — лёд. В него она превращается, когда при нормальном атмосферном давлении её температура снижается до 0оС. А при повышении температуры до 100оС вода закипает и превращается в пар, который является её газообразным состоянием.

Процесс превращения вещества в пар называют парообразованием. Обратный процесс перехода из пара в жидкость — конденсация.

Парообразование происходит в двух случаях: при испарении и при кипении.

Испарение

Испарением называют фазовый процесс перехода вещества из жидкого состояния в газообразное или парообразное, происходящий на поверхности жидкости.

Как и при плавлении, при испарении веществом поглощается теплота. Она затрачивается на преодоление сил сцепления частиц (молекул или атомов) жидкости.

Кинетическая энергия молекул, обладающих самой высокой скоростью, превышает их потенциальную энергию взаимодействия с другими молекулами жидкости. Благодаря этому они преодолевают притяжение соседних частиц и вылетают с поверхности жидкости.

Средняя энергия оставшихся частиц становится меньше, и жидкость постепенно остывает, если её не подогревать извне.

Так как частицы находятся в движении при любой температуре, то и испарение также происходит при любой температуре. Мы знаем, что лужи после дождя высыхают даже в холодную погоду.

Но скорость испарения зависит от многих факторов. Один из важнейших — температура вещества. Чем она выше, тем больше скорость движения частиц и их энергия, и тем большее их количество покидает жидкость в единицу времени.

Наполним одинаковым количеством воды 2 стакана. Один поставим на солнцепёк, а другой оставим в тени. Через некоторое время увидим, что воды в первом стакане стало меньше, чем во втором. Её нагрели солнечные лучи, и она испарилась быстрее.

Лужи после дождя летом также высыхают гораздо быстрее, чем весной или осенью. В сильную жару происходит быстрое испарение воды с поверхностей водоёмов. Высыхают пруды, озёра, пересыхают русла неглубоких рек.

Чем выше температура окружающей среды, тем выше скорость испарения.

При одинаковом объёме жидкость, находящаяся в широкой тарелке, испарится гораздо быстрее жидкости, налитой в стакан. Это означает, что скорость испарения зависит от площади поверхности испарения. Чем больше эта площадь, тем большее количество молекул вылетает из жидкости в единицу времени.

При одинаковых внешних условиях скорость испарения зависит от рода вещества. Заполним стеклянные колбы одинаковым объёмом воды и спирта. Через некоторое время увидим, что спирта осталось меньше, чем воды. Он испаряется с большей скоростью. Так происходит, потому что молекулы спирта слабее взаимодействуют друг с другом, чем молекулы воды.

Влияет на скорость испарения и наличие ветра. Мы знаем, что вещи после стирки гораздо быстрее высыхают, когда их обдувает ветер. Струя горячего воздуха в фене способна быстро высушить наши волосы.

Ветер уносит молекулы, вылетевшие из жидкости, и обратно они уже не возвращаются. Их место занимают новые молекулы, покидающие жидкость. Поэтому в самой жидкости их становится меньше. Следовательно, она испаряется быстрее.

Сублимация

Испарение происходит и в твёрдых телах. Мы видим, как постепенно высыхает на морозе замёрзшее, покрытое льдом бельё. Лёд превращается в пар. Мы ощущаем резкий запах, образующийся при испарении твёрдого вещества нафталина.

Некоторые вещества вообще не имеют жидкой фазы. К примеру, элементарный иод I2 — простое вещество, представляющее собой кристаллы чёрно-серого цвета с фиолетовым металлическим блеском, при нормальных условиях сразу же превращается в газообразный иод — фиолетовые пары с резким запахом. Тот жидкий йод, который мы покупаем в аптеках, — это не жидкое его состояние, а раствор йода в спирте.

Процесс перехода твёрдых тел в газообразное состояние, минуя жидкую стадию, называют сублимацией, или возгонкой.

Кипение

Кипение — это тоже процесс перехода жидкости в пар. Но парообразование при кипении происходит не только на поверхности жидкости, но и по всему её объёму. Причём процесс этот проходит гораздо интенсивнее, чем при испарении.

Поставим на огонь чайник с водой. Так как в воде всегда есть растворённый в ней воздух, то при нагревании на дне чайника и на его стенках появляются пузырьки. Эти пузырьки содержат воздух и насыщенный водяной пар. Сначала они появляются на стенках чайника.

Количество пара в них увеличивается, увеличиваются в размерах и они сами. Затем под воздействием выталкивающей силы Архимеда они будут отрываться от стенок, подниматься вверх и лопаться на поверхности воды.

Когда температура воды достигнет 100оС, пузырьки будут образовываться уже по всему объёму воды.

Испарение происходит при любой температуре, а кипение — только при определённой температуре, которая называется температурой кипения.

Каждое вещество имеет свою температуру кипения. Она зависит от величины давления.

При нормальном атмосферном давлении вода закипает при температуре 100оС, спирт — при 78 оС, железо — при 2750 оС. А температура кипения кислорода — минус 183 оС.

При уменьшении давления температура кипения снижается. В горах, где атмосферное давление ниже, вода закипает при температуре менее 100 оС. И чем выше над уровнем моря, тем меньшей будет температура кипения. А в кастрюле-скороварке, где создаётся повышенное давление, вода закипает при температуре выше 100 оС.

Насыщенный и ненасыщенный пар

Если вещество может одновременно существовать в жидкой (или твёрдой) фазе и газообразной, то его газообразное состояние называют паром. Пар образуют молекулы, вылетевшие при испарении из жидкости или твёрдого вещества.

Нальём жидкость в сосуд и плотно закроем его крышкой. Через некоторое время количество жидкости уменьшится из-за её испарения. Молекулы, покидающие жидкость, будут концентрироваться над её поверхностью в виде пара. Но когда плотность пара станет довольно высокой, некоторые из них начнут снова возвращаться в жидкость.

И таких молекул будет всё больше и больше. Наконец, настанет такой момент, когда число молекул, вылетающих из жидкости, и число молекул, возвращающихся в неё, сравняется. В этом случае говорят, что жидкость находится в динамическом равновесии со своим паром.

А такой пар называется насыщенным.

Если при парообразовании из жидкости вылетает больше молекул, чем возвращается, то такой пар будет  ненасыщенным. Ненасыщенный пар образуется, когда испаряющаяся жидкость находится в открытом сосуде. Покидающие её молекулы рассеиваются в пространстве. Возвращаются в жидкость далеко не все из них.

Конденсация пара

Обратный переход вещества из газообразного состояния в жидкое называют конденсацией. При конденсации часть молекул пара возвращается в жидкость.

Пар начинает превращаться в жидкость (конденсироваться) при определённом сочетании температуры и давления. Такое сочетание называется критической точкой. Максимальная температура, ниже которой начинается конденсация, называется критическойтемпературой. При температуре выше критической газ никогда не превратится в жидкость.

В критической точке граница раздела фазовых состояний жидкость-пар размывается. Исчезает поверхностное натяжение жидкости, выравниваются плотности жидкости и её насыщенного пара.

При динамическом равновесии, когда число молекул, покидающих жидкость и возвращающихся в неё равно, процессы испарения и конденсации уравновешены.

При испарении воды её молекулы образуют водяной пар, который смешивается с воздухом или другим газом. Температура, при которой такой пар в воздухе становится насыщенным, начинает конденсироваться при охлаждении и превращается в капельки воды, называется точкой росы.

Когда в воздухе находится большое количество водяного пара, говорят, что его влажность повышена.

В природе испарение и конденсацию мы наблюдаем очень часто. Утренний туман, облака, дождь — всё это результат этих явлений. С земной поверхности при нагревании испаряется влага. Молекулы образовавшегося пара поднимаются вверх.

Встречая на своём пути прохладные листики или травинки, пар конденсируется на них в виде капелек росы. Чуть выше, в приземных слоях, он становится туманом. А высоко в атмосфере при низкой температуре остывший пар превращается в облака, состоящие из капелек воды или кристалликов льда.

Впоследствии из этих облаков на землю прольётся дождь или выпадет град.

Но капельки воды при конденсации образуются лишь в том случае, когда в воздухе находятся мельчайшие твёрдые или жидкие частицы, которые называют ядрами конденсации. Ими могут быть продукты горения, распыления, частицы пыли, морской соли над океаном, частицы, образовавшиеся в результате химических реакций в атмосфере и др.

Десублимация

Иногда вещество может перейти из газообразного состояния сразу в твёрдое, минуя жидкую стадию. Такой процесс называется десублимацией.

Ледяные узоры, которые появляются на стёклах в мороз, и есть пример десублимации. При заморозках почва покрывается инеем — тонкими кристалликами льда, в которые превратились водяные пары из воздуха.

Источник: http://ency.info/materiya-i-dvigenie/molekulyarno-kineticheskaya-teoriya/357-isparenie

Испарение воды

что такое парообразование в физике определение

  • 1 Немного физики
  • 2 Параметры, испарение воды
  • 3 Какие бывают поверхности

Наиболее интересный процесс, который протекает на нашей планете – процесс испарения воды. Ведь круговорот воды в природе представляет собой массу различных переходных состояний воды, которые плавно переходят одно в другое и в целом составляют замкнутый круг.

Можно вспомнить множество интересных примеров, которые  помогут оценить возможности воды по перемещению на планете, ведь массы воздуха с каплями воды смещаются постоянно и непрерывно по всему земному шару. То есть, вода, падающая на землю, постоянно разная. В этом тоже можно заметить уникальность воды.

Но давайте рассмотрим процесс испарения более подробно.

Немного физики

Вода испаряется при любой температуре. В отличие от кипения, когда молекулы воды покидают общую массу жидкости из-за своей кинетической энергии, испарение происходит «добровольно». То есть, кинетическая энергия мала, но отрыв происходит из-за незначительного превышения.

Чем меньше разница температур воды и окружающего воздуха, тем меньше молекул воды отправится в воздух.

Конечно, объяснение на пальцах не всегда точно может показать, что именно творится с водой в такие периоды, но стоит отметить тот факт, что именно некоторые аспекты испарения помогают человеку жить проще.

Например, расчет поверхности жидкости, которая должна остыть, поможет прикинуть, сколько времени потребуется для того, чтобы вода остыла. Например, вода в чашке остынет медленнее, чем вода в тарелке. А все из-за того, что площадь больше.

Ведь количество молекул, которые в среднем отрываются от общей массы воды, одинаково на единицу площади. Значит, чем больше площадь, тем больше молекул «вылетят» из воды и отберут вместе со средней кинетической энергией еще и температуру жидкости.

Сложно? Что поделать, таково физическое описание процесса испарения. И в нем сокрыто немало секретов.

Параметры, испарение воды

Особенность испарения в том, что расчет поверхности может показать не только скорость остывания жидкости, но и то, насколько быстро напитается влагой что-то, расположенное  над влагой. Кроме того, есть также один важный момент.

Расчет поверхности жидкости, которая испаряется в помещении, показывает, как скоро можно получить определенную влажность.

И хотя конечный результат состоит из нескольких параметров, основной (скорость испарения), можно получить только лишь произведя расчет поверхности.

Что еще может повлиять на испарение воды? Конечно же, влажность воздуха. Расчет поверхности воды, разность температур и численное значение влажности.

Все эти параметры, умноженные на определенный коэффициент, дадут тот самый результат, при котором комната наполнится нужным количеством влаги без особых усилий. Чем больше разница в параметрах, тем быстрее будет происходить испарение.

Если же влажность в помещении приближена к 100%, то и ждать испарения не стоит: молекулам воды в насыщенном воздухе деваться просто некуда.

Какие бывают поверхности

Итак, перейдем к тому, что можно назвать расчет поверхности. Это поиск площади поверхности жидкости, которая в настоящий момент испаряется. А испаряются все жидкости без исключения. Для этого расчета используются классические планиметрические формулы из геометрии. Овалы, окружности, квадраты и прямоугольники. Учитывая , что емкости для жидкости могут иметь совершенно различный вид, стоит иметь в запасе достаточное количество формул для проведения математических вычислений.

Если знать площадь, то можно легко определить навскидку скорость и степень испарения. Поэтому для тех, кто уверен в пользе влажности в помещении, это очень важно. Пользуйтесь формулами, рассчитывайте площадь и создайте уникальный климат в своей квартире.

Источник: https://voday.ru/agregatnye-sostoyaniya/par/isparenie-vody.html

Испарение — это Что такое испарение

что такое парообразование в физике определение

В природе вещества могут быть в одном из трех агрегатных состояний: твердом, жидком и газообразном. Переход из первого во второе и наоборот можно наблюдать ежедневно, особенно зимой. Однако превращение жидкости в пар, которое известно как процесс испарения, часто не видно глазу. При кажущейся незначительности оно играет важную роль в жизни человека. Итак, давайте узнаем об этом подробнее.

Испарение – это что такое

Каждый раз, решив вскипятить чайник для чая или кофе, можно наблюдать, как, достигнув 100 °С, вода превращается в пар. Именно это и является практическим примером процесса парообразования (перехода определенного вещества в газообразное состояние).

Парообразование бывает двух видов: кипение и испарение. На первый взгляд они идентичны, но это распространенное заблуждение.

Испарение – это парообразование с поверхности вещества, а кипение – со всего его объема.

Испарение и кипение: в чем разница

Хотя и процесс испарения, и кипение, оба способствуют переходу жидкости в газообразное состояние, стоит помнить о двух важных отличиях между ними.

  • Кипение – это активный процесс, который происходит при определенной температуре. Для каждого вещества она уникальна и может меняться только при понижении атмосферного давления. При нормальных условиях для кипения воды нужно 100 °С, для рафинированного подсолнечного масла — 227 °С, для нерафинированного — 107 °С. Спирту, чтобы закипеть, наоборот, нужна более низкая температура – 78 °С. Температура же испарения может быть любой и оно, в отличие от кипения, происходит постоянно.
  • Вторым существенным отличием между процессами является то, что при кипении парообразование происходит по всей толще жидкости. Тогда как испарение воды или других веществ происходит только с их поверхности. Кстати, процесс кипения всегда одновременно сопровождается и испарением.
ЭТО ИНТЕРЕСНО:  Какой холодильник самый лучший и надежный

Процесс сублимации

Считается, что испарение – это переход из жидкого в газообразное агрегатное состояние. Однако в редких случаях, минуя жидкое, возможно испарение прямо из твердого состояния в газообразное. Такой процесс называется сублимацией.

Это слово знакомо всем, кто хоть раз заказывал кружку или футболку с любимой фотографией в фотосалоне. Для перманентного нанесения изображения на ткань или керамику как раз и используется этот вид испарения, в честь него печать такого рода называется сублимационной.

Также такое испарение часто используется для промышленной сушки фруктов и овощей, изготовления кофе.

Хотя сублимация встречается намного реже, нежели испарение жидкости, иногда ее можно наблюдать в быту. Так, вывешенное сушиться зимой постиранное влажное белье – мгновенно замерзает и становится твердым. Однако постепенно эта жесткость уходит, и вещи становятся сухими. В данном случае вода из состояния льда, минуя жидкую фазу, переходит сразу в пар.

Как происходит испарение

Как и большинство физических и химических процессов, главную роль в процессе испарения играют молекулы.

В жидкостях они расположены очень близко друг к другу, но при этом они не имеют фиксированного места расположения. Благодаря этому они могут «путешествовать» по всей площади жидкости, причем с разными скоростями.

Это достигается благодаря тому, что во время движения они сталкиваются между собой и от этих столкновений их скорость меняется. Став достаточно быстрыми, самые активные молекулы получают возможность подняться на поверхность вещества и, преодолев силу притяжения других молекул, покинуть жидкость.

Так происходит испарение воды или другого вещества и образуется пар. Не правда ли, немного напоминает полет ракеты в космос?

Хотя из жидкости в пар переходят самые активные молекулы, однако оставшиеся их «собратья» продолжают пребывать в постоянном движении. Постепенно и они приобретают необходимую скорость, чтобы преодолеть притяжение и перейти в другое агрегатное состояние.

Постепенно и постоянно покидая жидкость, молекулы задействуют для этого ее внутреннюю энергию и она уменьшается. А это напрямую влияет на температуру вещества – она понижается. Именно поэтому количество остывающего чая в чашке немного уменьшается.

Условия испарения

Наблюдая за лужами после дождя, можно заметить, что некоторые из них высыхают быстрее, а некоторые дольше. Поскольку их высыхание является процессом испарения, то можно на данном примере разобраться с условиями, необходимыми для этого.

  • Скорость испарения зависит от типа испаряемого вещества, ведь каждое из них имеет уникальные особенности, влияющие на время, за которое его молекулы полностью перейдут в газообразное состояние. Если оставить открытыми 2 идентичных флакона, наполненных одинаковым количеством жидкости (в одном спирт С2Н5ОН, в другом – вода Н2О), то первая емкость опустеет быстрее. Поскольку, как уже было сказано выше, температура испарения у спирта ниже, а значит, он быстрее испарится.
  • Второе, от чего зависит испарение, – температура окружающей среды и температура кипения испаряемого вещества. Чем выше первая и ниже вторая, тем быстрее жидкость сможет ее достигнуть и перейти в газообразное состояние. Именно поэтому при проведении некоторых химических реакций с участием испарения вещества специально нагреваются.
  • Еще одним условием, от чего зависит испарение, является площадь поверхности вещества, с которого оно происходит. Чем она больше, тем быстрее происходит процесс. Рассматривая различные примеры испарения, можно снова вспомнить о чае. Его часто переливают в блюдце, чтобы охладить. Там напиток быстрее остывал, потому что увеличивалась площадь поверхности жидкости (диаметр блюдца больше диаметра чашки).
  • И снова о чае. Известен еще одни способ быстрее его остудить – подуть на него. Каким образом можно заметить, что наличие ветра (движения воздуха) — это то, от чего также зависит испарение. Чем выше скорость ветра, тем быстрее молекулы жидкости перейдут в пар.
  • Также влияет на интенсивность испарения атмосферное давление: чем оно ниже, тем быстрее молекулы переходят из одного состояния в другое.

Конденсация и десублимация

Превратившись в пар, молекулы не перестают двигаться. В новом агрегатном состоянии они начинают сталкиваться с молекулами воздуха. Из-за этого иногда они могут возвращаться в жидкое (конденсация) или твердое (десублимация) состояние.

Когда процессы испарения и конденсации (десублимации) равносильны между собой, это называют динамическим равновесием. Если газообразное вещество находится в динамическом равновесии со своей жидкостью аналогичного состава, его называют насыщенным паром.

Испарение и человек

Рассматривая различные примеры испарения, нельзя не вспомнить влияние этого процесса на организм человека.

Как известно, при температуре тела 42,2 °С белок в крови человека сворачивается, что ведет к смерти. Нагреваться человеческое тело может не только из-за инфекции, но и при выполнении физического труда, занятий спортом или во время пребывания в жарком помещении.

Организму удается сохранить приемлемую для нормальной жизнедеятельности температуру, благодаря системе самоохлаждения – потоотделению. Если температура тела повышается, через поры кожи выделяется пот, а потом происходит его испарение. Этот процесс помогает «сжечь» лишнюю энергию и способствует охлаждению организма и нормализации его температуры.

Кстати, именно поэтому не стоит безоговорочно верить рекламам, которые преподносят пот как главное бедствие современного общества и пытаются продать наивным покупателям всевозможные вещества для избавления от него. Заставить организм меньше потеть, не нарушая его нормальной работы, нельзя, а хороший дезодорант способен лишь маскировать неприятный запах пота.

Поэтому, используя антиперспиранты, различные присыпки и пудры, можно нанести организму непоправимый вред. Ведь эти вещества забивают поры или сужают выводные протоки потовых желез, а значит, лишают тело возможности контролировать свою температуру. В случаях, если использование антиперспирантов все же необходимо, предварительно стоит проконсультироваться с врачом.

Роль испарения в жизни растений

Как известно, не только человек на 70% состоит из воды, но и растения, а некоторые, вроде редиса, и на все 90%. Поэтому испарение также важно и для них.

Вода является одним из главных источников попадания полезных (и вредных тоже) веществ в организм растения. Однако, чтобы эти вещества могли усвоиться, необходим солнечный свет. Вот только в жаркие дни солнце способно не просто нагреть растение, но и перегреть, тем самым погубив его.

Чтобы этого не произошло, представители флоры способны самоохлаждаться (похоже на человеческий процесс потоотделения). Иными словами при перегреве растения испаряют воду и таким образом охлаждаются. Поэтому поливу садов и огородов уделяется летом так много внимания.

Как используют испарение в промышленности и в быту

Для химической и пищевой промышленности испарение – это незаменимый процесс. Как уже было сказано выше, оно не только помогает производить дегидратацию многих продуктов (испарять влагу из них), что увеличивает срок их хранения; но также помогает изготавливать идеальные диетические продукты (меньше веса и калорий, при большем содержании полезных веществ).

Также испарение (в особенности сублимация) используется для очистки различных веществ.

Еще одной сферой применения является кондиционирование воздуха.

Не стоит забывать и о медицине. Ведь процесс ингаляции (вдыхание пара, насыщенного лечебными препаратами) основан тоже на процессе испарения.

Опасные испарения

Однако, как и у всякого процесса, у этого есть и негативные стороны. Ведь превращаться в пар и вдыхаться людьми и животными могут не только полезные вещества, но и смертельно опасные. А самое печальное в том, что они – невидимы, а значит, человек не всегда знает, что подвергся воздействию токсина. Именно поэтому стоит избегать пребывания без защитных масок и костюмов, на заводах и предприятиях, работающих с опасными веществами.

К сожалению, вредные испарения могут подстерегать и дома. Ведь если мебель, обои, линолеум или другие предметы изготовлены из дешевых материалов с нарушениями технологии, они способны выделять токсины в воздух, которые и будут постепенно «травить» своих хозяев. Поэтому при покупке любой вещи, стоит просматривать сертификат качества материалов, из которых она изготовлена.

Источник: https://www.syl.ru/article/293575/isparenie---eto-chto-takoe-isparenie-opredelenie-primeryi

Испарение и конденсация. Насыщенный и ненасыщенный пар

В жидкости (или твердом теле) при любой температуре существует некоторое количество «быстрых» молекул, кинетическая энергия которых больше потенциальной энергии их взаимодействия с остальными частицами вещества. Если такие молекулы оказываются вблизи поверхности, то они могут преодолеть притяжение остальных молекул и вылететь за пределы жидкости, образуя над ней пар. Испарение твердых тел также часто называют возгонкой или сублимацией.

Испарение происходит при любой температуре, при которых данное вещество может находиться в жидком или твердом состояниях. Однако интенсивность испарения зависит от температуры.

При повышении температуры количество «быстрых» молекул увеличивается, и, следовательно, интенсивность испарения возрастает. Скорость испарения также зависит от площади свободной поверхности жидкости от вида вещества.

Так, например, вода, налитая в блюдце, испарится быстрее воды, налитой в стакан. Спирт испаряется быстрее воды и т.д.

Конденсация

Количество жидкости в открытом сосуде вследствие испарения непрерывно уменьшается. Но в плотно закрытом сосуде этого не происходит. Объясняется это тем, что одновременно с испарением в жидкости (или твердом теле) происходит обратный процесс.

Молекулы пара движутся над жидкостью хаотически, поэтому часть из них под действием притяжения молекул свободной поверхности попадает обратно в жидкость. Процесс превращения пара в жидкость называется конденсацией.

Процесс превращения пара в твердое тело обычно называют кристаллизацией из пара.

После того, как мы нальем жидкость в сосуд и плотно его закроем, жидкость начнет испаряться, и плотность пара над свободной поверхностью жидкости будет увеличиваться. Однако, одновременно с этим будет расти число молекул, возвращающихся обратно в жидкость. В открытом сосуде ситуация иная: покинувшие жидкость молекулы могут не возвращаться в жидкость.

В закрытом сосуде с течением времени устанавливается равновесное состояние: число молекул, покидающих поверхность жидкости, становится равным числу молекул пара, возвращающихся в жидкость. Такое состояние называется состоянием динамического равновесия (рис.1).

В состоянии динамического равновесия между жидкостью и паром одновременно происходит и испарение и конденсация, и оба процесса компенсируют друг друга.

Рис.1. Жидкость в состоянии динамического равновесия

Примеры решения задач

Источник: http://ru.solverbook.com/spravochnik/molekulyarnaya-fizika-i-termodinamika/nasyshhennyj-i-nenasyshhennyj-par/

Что такое испарение и как оно происходит?

Солнечная энергия приводит в действие невероятно сильную тепловую машину, которая, преодолевая гравитацию, без труда поднимает в воздух огромных размеров куб (каждая сторона составляет около восьмидесяти километров). Таким образом, с поверхности нашей планеты за год испаряется водяной слой метр толщиной.

Что такое испарение

Во время испарения жидкое вещество постепенно переходит в паро- или газообразное состояние после того, как мельчайшие частицы (молекулы или атомы), двигаясь на скорости, достаточной для того, чтобы преодолеть силы сцепления между частицами, отрываются от поверхности.

Несмотря на то, что процесс испарения известен больше как переход жидкого вещества в пар, существует сухое испарение, когда при минусовой температуре лёд переходит из твёрдого состояния в парообразное, минуя жидкую фазу. Например, если выстиранное сырое бельё развесить сушиться на морозе, оно, замерзнув, становится очень жёстким, но через какое-то время, размягчившись, становится сухим.

Как улетучивается жидкость

Молекулы жидкости расположены друг к другу практически впритык, и, несмотря на то, что связаны между собой силами притяжения, к определённым точкам не привязаны, а потому свободно перемещаются по всей площади вещества (они постоянно сталкиваются друг с другом и изменяют свою скорость).

Частицы, что уходят на поверхность, набирают во время движения темп, достаточный для того, чтобы покинуть вещество. Оказавшись наверху, своё движение они не останавливают и, преодолев притяжение нижних частиц, вылетают из воды, преобразовываясь в пар. При этом часть молекул из-за хаотического движения возвращается в жидкость, остальные уходят дальше, в атмосферу.

Цветные озера вулкана Келимуту89194.670

Испарение на этом не заканчивается, и на поверхность вырываются следующие молекулы (так происходит до тех пор, пока жидкость полностью не улетучивается).

Если речь идёт, например, о круговороте воды в природе, можно наблюдать за процессом конденсации, когда пар, сконцентрировавшись, при определённых условиях возвращается назад. Таким образом, испарение и конденсация в природе тесно связаны между собой, поскольку благодаря им осуществляется постоянный водообмен между землёй, сушей и атмосферой, благодаря чему окружающая среда снабжается огромным количеством полезных веществ.

Стоит заметить, что интенсивность испарения у каждого вещества различна, а потому основными физическими характеристиками, которые влияют на скорость испарения, являются:

  1. Плотность. Чем вещество плотнее, тем ближе молекулы находятся по отношению друг к другу, тем труднее верхним частицам преодолеть силу притяжения других атомов, следовательно, испарение жидкости происходит медленнее. Например, метиловый спирт улетучивается намного быстрее воды (метиловый спирт – 0,79 г/см3, вода – 0,99 г/см3).
  2. Температура. На скорость испарения также влияет теплота испарения. Несмотря на то, что процесс испарения происходит даже при минусовой температуре, чем больше температура вещества, тем выше теплота испарения, значит, тем быстрее двигаются частицы, которые, увеличивая интенсивность испарения, массово покидают жидкость (поэтому кипящая вода испаряется быстрее холодной).Из-за потери быстрых молекул внутренняя энергия жидкости уменьшается, а потому температура вещества во время испарения понижается. Если жидкость в это время будет находиться возле источника тепла или непосредственно нагреваться, её температура снижаться не будет, так же, как и не снизится интенсивность испарения.
  3. Площадь поверхности. Чем большую площадь поверхности занимает жидкость, тем больше молекул с неё улетучивается, тем выше скорость испарения. Например, если влить воду в кувшин с узким горлышком, жидкость будет исчезать очень медленно, поскольку испаряемые частицы начнут оседать на сужающихся стенках и спускаться. В то же время, если налить воду в миску, молекулы будут беспрепятственно уходить с поверхности жидкости, поскольку им будет не на чем конденсироваться, дабы вернуться в воду.
  4. Ветер. Процесс испарения окажется намного быстрее, если над ёмкостью, в которой находится вода, движется воздух. Чем быстрее он это делает, тем скорость испарения больше. Нельзя не учитывать взаимодействие ветра с испарением и конденсацией.Молекулы воды, поднимаясь с океанической поверхности, частично возвращаются назад, но большая часть высоко в небе конденсируется и образует облака, которые ветер перегоняет на сушу, где капли выпадают в виде дождя и, проникнув в грунт, через какое-то время возвращаются в океан, снабжая растущую в почве растительность влагой и растворёнными минеральными веществами.

Роль в жизни растений

Значение испарения в жизни растительности трудно переоценить, особенно учитывая, что живое растение на восемьдесят процентов состоит из воды. Поэтому если растению не хватает влаги, оно может погибнуть, так как вместе с водой в него не будут поступать также нужные для жизнедеятельности питательные вещества и микроэлементы.

Вода, передвигаясь по растительному организму, переносит и образует внутри него органические вещества, для образования которых растение нуждается в солнечном свете.

А вот тут немаловажная роль отводится испарению, так как солнечные лучи имеют способность чрезвычайно сильно нагревать предметы, а потому способны вызвать гибель растения от перегрева (особенно в жаркие летние дни). Чтобы этого избежать, происходит испарение воды листьями, через которые в это время выделяется много жидкости (например, из кукурузы за сутки испаряется от одного до четырёх стаканов воды).

Это значит, что чем больше в организм растения поступит воды, тем испарение воды листьями будет интенсивнее, растение будет больше охлаждаться и нормально расти. Испарение воды растениями можно ощутить, если во время прогулки в знойный день прикоснуться к зелёным листьям: они обязательно окажутся прохладными.

ЭТО ИНТЕРЕСНО:  Hansa чей бренд производитель

Связь с человеком

Не менее велика роль испарения в жизнедеятельности человеческого организма: он борется с нагреванием посредством потоотделения. Испарение происходит обычно через кожу, а также через дыхательные пути. Это можно легко заметить во время болезни, когда температура тела поднимается или в период занятий спортом, когда повышается интенсивность испарения.

Если нагрузка невелика, из организма уходит от одного до двух литров жидкости в час, при более интенсивном занятии спортом, особенно когда температура внешней среды превышает 25 градусов, интенсивность испарения увеличивается и с потом может выйти от трёх до шести литров жидкости.

Через кожу и дыхательные пути вода не только покидает организм, но и поступает в него вместе с испарениями окружающей среды (не зря своим пациентам врачи часто прописывают отдых на море). К сожалению, вместе с полезными элементами в него нередко попадают и вредные частицы, среди них – химические вещества, вредные испарения, которые наносят здоровью непоправимый ущерб.

Град89194.231

Одни из них токсичны, другие, вызывают аллергию, третьи – канцерогенны, четвёртые вызывают онкологические и другие не менее опасные заболевания, при этом многие обладают сразу несколькими вредными свойствами. Вредные испарения оказываются в организме в основном через органы дыхания и кожу, после чего, оказавшись внутри, моментально всасываются в кровь и разносятся по всему телу, оказывая токсическое воздействие и вызывая серьёзные заболевания.

В данном случае много зависит от местности, где обитает человек (возле фабрики или завода), помещения, в котором живёт или работает, а также времени пребывания в опасных для здоровья условиях.

Вредные испарения могут попадать в организм из предметов быта, например, линолеума, мебели, окон и пр. Дабы сохранить жизнь и здоровье, таких ситуаций желательно избегать и наилучшим выходом будет покинуть опасную территорию, вплоть до обмена квартиры или работы, а при обустройстве жилища обращайте внимание на сертификаты качества покупаемых материалов.

Источник: https://awesomeworld.ru/prirodnye-yavleniya/isparenie.html

Испарение

В поверхностном слое (около поверхности жидкости) действуют силы, обеспечивающие существование поверхности, эти силы не дают молекулам покидать объем вещества. Молекулы находятся в постоянном тепловом движении и некоторые из них обладают скоростями, достаточными для преодоления удерживающих сил. Данное явление называют испарением.

Процесс испарения может протекать при любой температуре, но его скорость зависит от температуры. Чем выше температура, тем быстрее происходит процесс испарения.

Испарение жидкостей

Эксперименты показывают, что жидкости могут испаряться, то есть переходить в состояние газа.

Скорость процесса испарения оценивают количеством молекул, которые переходят с единицы поверхности жидкости в пар в единицу времени. Для разных жидкостей этот параметр разный:

  • эфир, находящийся в тарелке испаряется за несколько минут при температуре $200C$;
  • вода в таких же условиях и такой же массы будет испаряться несколько часов;
  • ртуть испарится за несколько лет.

Если покинувшие жидкость молекулы уходят из пространства около поверхности жидкости, то с течением времени вся жидкость испаряется.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

При удержании молекул, покинувших жидкость в ограниченном объеме около поверхности жидкости, возможен возврат этих молекул в жидкость. Молекулы «ушедшие» из жидкости составляют пар. Частицы пара, которые попадают в некоторую область у поверхности жидкости, могут при помощи сил притяжения быть вовлечены назад в жидкость. Так скорость испарения может быть существенно уменьшена.

Увеличение плотности молекул пара приводит к тому, что количество молекул, покинувших жидкость равно числу молекул в жидкость вернувшаяся. Система пар – жидкость приходит в состояние динамического равновесия.

Определение 1

Пар, который находится в состоянии динамического равновесия со своей жидкостью, называют насыщенным.

При увеличении температуры плотность и давление насыщенного пара растут. При росте плотности насыщенных паров поверхностное натяжение жидкости уменьшается, поскольку увеличиваются силы противоположные силам, направленным внутрь жидкости. При этом скрытая теплота парообразования при увеличении температуры уменьшается. При некоторой температуре, которую именуют критической, плотность насыщенных паров равна плотности жидкости. Так, различие между фазами исчезает.

Поверхностное натяжение и скрытая теплота парообразования при критической температуре становятся равными нулю.

Испарение твердых веществ

Испаряться способны не только жидкости, но и твердые тела, так при комнатной температуре и атмосферном давлении испаряются:

  • нафталин;
  • камфара;
  • кристаллы йода;
  • бром.

Лед испаряется при отрицательных температурах.

Определение 2

Испарения твердых тел, без перехода в жидкую фазу, называют возгонкой (или сублимацией).

Скорость возгонки зависит от температуры и химической природы вещества.

Молекулярные кристаллы, подобные йоду, брому способны легко испариться, особенно, если их немного подогреть. Это происходит потому, что силы межмолекулярного притяжения, которые связывают молекулы в решетке кристаллов, довольно слабы.

Довольно быстро испаряется лед, который обладает рыхлой кристаллической решеткой.

Тогда как кристаллы металлов, имеющие плотную упаковку, плохо подвержены испарению.

Механизм испарения

Механизм испарения можно описать так:

  1. Молекула (атом), который находится около поверхности вещества, подвержен действию сил молекулярного взаимодействия, втягивающих его внутрь. Эти силы удерживают частицу на поверхности жидкости (или кристалла).
  2. Для возможности у частицы покинуть поверхность вещества, молекула должна обладать кинетической энергией большей, чем энергия испарения ($E_0$).

Замечание 1

Энергия испарения равна работе, которую следует совершить для преодоления сил молекулярного притяжения и удаления частицы на такое расстояние от поверхности вещества, где силы молекулярного притяжения на нее уже не действуют.

Условие испарения можно математически записать как:

$\frac{m_0v2}{2}\ge E_0\left(1\right),$

где $m_0$ — масса молекулы; $v$ — скорость молекулы.

Формула (1) показывает, что поверхность вещества могут покинуть молекулы, скорость которых удовлетворяет условию (1), то есть быстрые частицы. Данный факт дает возможность понять, почему в процессе испарения вещество охлаждается. Температура тела определена средней кинетической энергией перемещения молекул. Если вещество покидают наиболее быстрые молекулы, то средняя энергия оставшихся частиц уменьшается, и это означает уменьшение температуры.

Особенно сильное охлаждение возникает тогда, когда испарение идет с большой скоростью. При этом в испаряющуюся жидкость не успевает поступать теплота от окружающих тел.

Охлаждение до $00$ можно легко добиться при испарении эфира или этила. Данное свойство используют врачи, если им требуется заморозить кожу человека, уменьшая ее чувствительность.

Охлаждение в процессе испарения и выделение тепла при конденсации пара очень важно в природных процессах, например:

  • Это определяет умеренность климата в странах около морей.
  • При помощи испарения пота кожей происходит процесс теплорегуляции у человека и животных. Когда температура воздуха повышена, кожа покрывается потом, пот испаряется, так происходит ее охлаждение.

Скорость испарения

Скорость испарения пропорциональна вероятности испарения, так как чем выше вероятность перехода молекул с поверхности тела в пар, тем большее количество молекул, которые переходят в пар с единицы площади за единицу времени.

$v_i\sim w_i\left(2\right),$

где $w_i=a{-\frac{\alpha E_0}{kT}}\ $ – вероятность испарения, тогда запишем:

$v_i=G_0a{-\frac{\alpha E_0}{kT}}\left(3\right),$

где G_0 – величина, пропорциональная количеству молекул, которые могут покинуть поверхность, то есть молекулы, скорость которых удовлетворяет условию (1). Можно предположить, что:

$G_0=B\sqrt{T}\left(4\right),$

где $B$ — постоянная, зависящая от химических свойств вещества; $T$ — температура вещества.

Источник: https://spravochnick.ru/fizika/isparenie/

Задача обучения

  • Выявить причины испарения возле поверхности жидкости.

Основные пункты

  • Испарение трансформирует жидкость в газ.
  • Испарение осуществляется при температуре ниже точки кипения, так как молекулы в жидкости обладают разной энергией.
  • Когда молекулы в жидкости ударяются, некоторые получают большее количество энергии и вырываются. Это понижает энергию оставшихся молекул и приводит к охлаждению в испаряющихся жидкостях.

Термин

  • Парообразование – трансформация твердого вещества или жидкости в газ.

Что такое и почему происходит испарение? Испарение – тип трансформации жидкости, возникающий на поверхности. Обычно молекулы в стакане воды не обладают достаточным количеством энергии, чтобы вырваться из жидкости. Но если присутствует необходимый нагрев, то жидкость стремительно переходит в парообразное состояние.

При ударе молекулы передают друг другу энергию. Иногда это происходит в одностороннем направлении и молекуле удается вырваться. Тремя условиями для испарения выступают тепло, атмосферное давление и перемещение воздуха.

Чтобы молекулы жидкости испарялись, они должны находиться как можно ближе к поверхности, перемещаться в правильном направлении и обладать достаточной кинетической энергией, чтобы преодолеть межмолекулярные силы.

Если этим критериям отвечает небольшое количество молекул, то скорость испарения низкая.

Когда молекулы ускоряются остальные обладают более низкой средней кинетической энергией, а температура жидкости падает. Этот процесс именуют испарительным охлаждением. Поэтому испарение пота охлаждает наш организм. При более высоких скоростях испарение также ускоряется.

(а) – Из-за распределения скоростей и некоторых кинетических энергий, определенная часть молекул получает возможность вырваться из парового состояния даже при температурах ниже точки кипения.

(b) – Если емкость герметизирована, то испарение продолжится, пока плотность конденсата не достигнет скорости конденсации, приравниваемой к темпу испарения. Плотность пара и созданное пропорциональное давление выступают значениями насыщения.

Они вырастают с температурой и не имеют связи с другими газами (воздух). На них может влиять только давление пара воды

Процесс испарения жидкости – важная часть в водном цикле. Солнце стимулирует испарение воды из земных океанов, морей, озер, почвы и прочих источников. В гидрологии испарение и транспирация объединяются в эвапотранспирацию. Вода испаряется, когда поверхность переживает воздействие и позволяет молекулам отрываться, создавая водяной пар. Он способен подняться и сформировать облака.

Читайте нас на Яндекс.Дзен

Источник: https://v-kosmose.com/fizika/isparenie/

Испарение — определение, условия и особенности процесса

Основное определение испарения — переход из жидкости в газ. Это термодинамический процесс, обусловленный хаотичным движением молекул тел в определённых агрегатных состояниях. Благодаря его существованию количество воды, масла, эфира, бензина или любого другого жидкого вещества в незакрытой ёмкости будет непрерывно уменьшаться с течением времени.

С точки зрения физики, испарение можно объяснить разницей температур на грани фазового перехода — жидкость обычно холоднее окружающего воздуха. Если других внешних влияний нет, испарение происходит медленно. Молекулы покидают воду в результате диффузии, переходя через полупроницаемую для жидкостей, но непроницаемую для газообразных веществ поверхность раздела фаз массового потока.

Основное отличие испарения от других форм парообразования заключается в том, что оно происходит только с поверхности. Атомы и молекулы меняют агрегатное состояние постепенно, испаряясь небольшими слоями. Впрочем, несмотря на это, с течением времени вся жидкость может постепенно испариться.

Другая отличительная черта процесса — возможность разной направленности тепловых потоков. Они могут идти:

  • из толщи жидкости к поверхности, а затем в воздух;
  • только из жидкости к поверхности;
  • к поверхности из воды и газовой среды одновременно;
  • к площади поверхности только от воздуха.

Направленность потоков зависит от температуры воздуха, фазового раздела и самой жидкости. Соотношения этих трёх величин по-разному учитываются в формуле испарения. От них зависит его скорость, направленность теплообмена и другие факторы. Для вычисления величины используются также экспериментальные коэффициенты, полученные путём опытов. Они уникальны для каждого вещества или смеси и обусловлены их химическим составом.

Испарение на молекулярном уровне

В жидких веществах молекулы расположены почти вплотную друг к другу, но не связаны, как в твёрдых субстанциях. Из-за этого они находятся в непрерывном движении, случайным образом сталкиваются друг с другом, меняют направление и скорость движения. Частицы, оказавшиеся близко к поверхности, со временем могут покинуть её, проникнув через зону фазового перехода.

Таким образом, испарение обусловлено непрерывным движением молекул. Если они обладают достаточной кинетической энергией и скоростью, то часть из них может сорваться с поверхности воды, преодолевая притяжение соседних частиц. Некоторые отражаются и возвращаются, другие вырываются в газовую среду и навсегда покидают вещество. Процесс повторяется с новыми (теперь тоже поверхностными) частицами, пока вся жидкость не станет газообразной.

В процессе жидкость теряет часть своей энергии, из-за чего снижается также её температура — это обусловлено тем, что первыми её покидают самые быстрые (а значит, и обладающие наибольшей кинетической силой) молекулы.

В результате наблюдается явление, называемое испарительным охлаждением жидкости. Этим объясняется то, что человеку быстро становится холодно в мокрой одежде, даже если ту облить тёплой водой.

При комнатной температуре явление проявляется слабо, поскольку жидкость компенсирует теряемое тепло теплообменом с окружающим воздухом.

Испарение нередко путают с кипением. Оба процесса являются разновидностями парообразования, то есть превращения жидкого вещества в газообразное. Разница состоит в том, что закипание — гораздо более активный и быстрый процесс, смена агрегатного состояния при котором наблюдается невооружённым глазом.

Не менее важное различие состоит в том, что испарение происходит всегда, а кипение — только при достижении жидкостью определённой температуры. Точная цифра меняется и зависит от характера вещества — для воды она составляет 100 °C, для рафинированного масла — 227 °C, для гелия — -269°C, вольфрама — 5680 °C.

Кипение — постоянный процесс, обусловленный определёнными закономерностями в движении молекул. Их отрыв от поверхности при этом явлении происходит постоянно и не зависит от случайностей при движении. Кроме того, смена агрегатного состояния при кипении происходит с жидкостью по всей толще, а не только на поверхности. Это можно заметить на практике — при закипании воды в её толще образуются пузырьки, поднимающиеся на поверхность из-за разницы масс.

Кипение всегда сопровождается испарением, потому во многом они взаимосвязаны. Особняком стоит явление сублимации — перехода вещества из твёрдого состояния в газообразное, минуя жидкую стадию. Это явление сопровождается разрывом молекулярных связей в результате внешнего подвода энергии (обычно через нагревание).

В природе сублимация наблюдается редко. Иногда её можно наблюдать при быстром таянии льда — например, замёрзшая мокрая одежда при потеплении мгновенно высыхает.

Факторы, влияющие на скорость процесса

Учёные заметили, что процесс происходит по-разному при изменяющихся свойствах жидкости и условиях внешней среды. Они выделили основные факторы, влияющие на испарение:

  • Химические и физические свойства вещества, его тип и класс. Большое значение имеет его плотность — чем ближе расположены молекулы, тем труднее им преодолеть общее притяжение и оторваться, вырвавшись в газовую среду. Из-за этого свойства спирты и алкоголь улетучиваются гораздо быстрее, чем обычная вода.
  • Температура. В отличие от кипения, испарение происходит при минусовых показателях термометра, но она всё ещё влияет на его скорость. При повышении температуры частицы двигаются быстрее, при понижении — медленнее. Соответственно, увеличивается или уменьшается их шанс покинуть жидкую среду и перейти в газообразную. Из-за испарительного охлаждения естественная скорость процесса со временем снижается, если нет дополнительного нагревания.
  • Размеры поверхности. Зависимость объясняется тем, что чем обширнее площадь соприкосновения у жидкой и газовой среды, тем больше молекул перелетят из одной в другую. Роль играет также обратная конденсация молекул — если налить их в ёмкость с узким горлышком, пар будет оседать на её стенках и стекать обратно в толщу воды. Эту особенность явления часто эксплуатируют при охлаждении различных веществ в промышленности и бытовых целях.
  • Скорость ветра. Движение воздуха «сдувает» молекулы с поверхности, увеличивая их кинетическую энергию, а также передвигает саму воду, увеличивая площадь поверхности за счёт ряби, волн, слетевших капелек и струй. Потому наличие ветра делает испарение более интенсивным. Это можно легко заметить, подув на ложку с горячей водой или чаем — так он остынет гораздо быстрее.
  • Атмосферное давление. Чем оно ниже, тем быстрее жидкости испаряются. Показатель влияет и на температуру кипения — например, при показателе барометра в 0,5 АТМ вместо стандартного 1 вода закипает при 82 °C. В природе это явление можно наблюдать, если отправиться в горы.
ЭТО ИНТЕРЕСНО:  Что такое холодильная камера

Факторы, способные повлиять на скорость испарения, известны большинству из повседневных примеров. Далёкие предки современных людей применяли их для сушки одежды, охлаждения жидкостей и других задач.

Роль явления

Испарение и кипение — очень распространённые физические явления, без которых стала бы невозможной нормальная жизнь на земле. Люди ежедневно сталкиваются с ним в быту, а также используют в промышленности, технике, энергетике и других сферах жизнедеятельности. Кроме того, фазовый переход жидкости и газа играет важную роль в существовании живых организмов и экосистеме планеты в целом.

В организме человека, животных и растений

Испарение играет важную роль в процессе саморегуляции температуры тела человека и большинства млекопитающих. Поскольку чрезмерное тепло для них вредно или даже смертельно (при 42,2 °C в крови происходит свёртывание белка, что приводит к быстрой смерти), в процессе эволюции организм разработал систему самоохлаждения — потоотделение. Она задействуется при пребывании в жарких или душных помещениях, тяжёлом физическом труде, болезнях.

Через поры на коже выделяется жидкость, которая затем быстро испаряется. Это позволяет быстро избавиться от лишней энергии и охладить тело, нормализовав температуру. Некоторые животные инстинктивно пытаются усилить этот процесс — например, собаки в жаркую погоду открывают рот и высовывают язык.

Представители флоры обладают похожим защитным механизмом. Чтобы не перегреться на солнце, они запускают процесс испарения ранее поглощённой воды, тем самым охлаждаясь. Поэтому в летнюю пору садоводы усиленно поливают культурные растения, предотвращая их засыхание или выгорание в самые жаркие дни.

В природе и окружающей среде

Роль испарения и конденсации (превращение газа обратно в жидкость) в природе трудно переоценить. Они лежат в основе естественного круговорота воды, который обеспечивает экосистему необходимыми питательными веществами, спасает водоёмы от пересыхания, а животных и растений — от вымирания. Только благодаря этому явлению жизнь на земле может существовать в нынешнем виде.

Испарение большого количества воды с поверхности морей, океанов, рек и озёр приводит к появлению дождевых туч, которые разносят влагу по всему миру и питают окружающую среду. Это же явление препятствует затоплению и заболачиванию участков (особенно зимой, когда тают снега и льды), возвращая лишнюю воду обратно в мировой океан.

Благодаря испарению возможно такое явление, как запахи. Животные используют его во множестве сфер своей жизни — от охоты и поиска пищи до размножения и общения. Оно также помогает представителям фауны распознавать опасность в виде хищников или огня и дыма, обнаруживать токсичные вещества в атмосфере.

В быту и промышленности

Испарение широко применяется в бытовой жизни людей, а также в создании сложных механизмов и промышленных машин. Некоторые примеры использования этого процесса:

  • создание охладителей для двигателей, ядерных реакторов, спускаемых аппаратов в космической технике;
  • сушка различных вещей — от одежды до производственного сырья;
  • запчасти бытовых и промышленных холодильников;
  • кондиционирование и очищение воздуха;
  • энергетическая промышленность;
  • очистка различных веществ на молекулярном уровне;
  • охлаждение воды;
  • дегидрация продуктов для увеличения срока хранения, создание диетической еды путём вывода лишних веществ;
  • готовка на пару в кулинарии;
  • стимуляция процессов при химических опытах;
  • декор и дизайн одежды — например, сублимационная фотопечать;
  • оздоровительные процедуры — бани, криотерапия, косметические техники;
  • медицинские ингаляции — приготовление насыщенных полезными веществами газов основано на процессе испарения.

Промышленная техника, использующая испарение для работы, строится по одной и той же схеме. В ней максимально увеличивается площадь поверхности жидкости, чем обеспечивается наилучший теплообмен с газовой средой. Это достигается за счёт разделения воды на отдельные струи и капли, а также образования тонких плёнок вещества на внутренней поверхности и насадках. Газ в приборах разгоняется, что также улучшает эффективность охлаждения.

Источник: https://nauka.club/fizika/ispareni%D0%B5.html

  • Что такое испарение?
  • Испарение на молекулярном уровне
  • Испарение и кипение: в чем отличие?
  • Факторы, влияющие на скорость испарения
  • Роль испарения
  • Испарение в организме человека, в животных и растениях
  • Испарение в природе и окружающей среде
  • Испарение в промышленности и быту
  • Испарение, видео
  • Испарением в физике (впрочем, и не только в ней) называют фазовый переход любой жидкости в парообразное или газообразное состояние.

    Простейший пример, с которым сталкивается каждый человек – испарение воды, когда мы ее сильно нагреваем, к примеру, делая себе чай, из нее идет пар. Пар этот и есть та самая вода, которая из жидкого состояния перешла в парообразное.

    Особенности процесса испарения разных жидкостей хорошо изучены физиками, а само испарение широко применяется в промышленности и в быту, встречается также и в природе.

    Что такое испарение?

    Классическое определение звучит так: испарение – это переход из жидкости в газ. При этом это термодинамический процесс, то есть такой, который происходит под воздействием температурных колебаний. Именно вследствие испарения количество любой жидкости в любой незакрытой емкости будет постепенно уменьшаться.

    Какие же причины испарения? Физика объясняет это явление разницей температур на грани фазового перехода: жидкость обычно несколько холоднее окружающего воздуха. Если нет каких-то внешних влияний, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость вследствие диффузии, они переходят через полупроницаемую для жидкостей, но непроницаемую для газовых веществ поверхность раздела фаз массового потока.

    Важно знать, что испарение всегда происходит только с поверхности жидкости, в этом основное отличие испарения от других форм парообразования. Атомы и молекулы испаряются не все сразу, а небольшими слоями, постепенно. Но, разумеется, со временем они могут испариться полностью.

    Еще одной интересной особенностью испарения является тот факт, что оно может иметь разную направленность тепловых потоков. Они могут идти:

    • из глубины жидкости к поверхности, а затем в воздух,
    • только из жидкости к поверхности,
    • к поверхности из воды и газовой среды одновременно,
    • к площади поверхности только от воздуха.

    Направленность тепловых потоков при испарении зависит от характера жидкости, температуры окружающего воздуха и фазового раздела. Эти три величины и их соотношение формируют формулу испарения.

    Испарение и кипение: в чем отличие?

    В начале статьи мы писали, что испарение особенно заметно при кипении воды, когда мы, к примеру, делаем себе чай. На самом деле испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в речке или озере непрерывно испаряется, хотя мы этого и не замечаем. Что же касается кипения, то оно является, по сути, катализированным испарением, когда сам процесс становится заметным невооруженным глазом и во много раз ускоренным.

    Но кипение происходит только при определенных температурах, причем в разных жидкостях разные температуры кипения (например, у воды температура кипения 100 °C), в то же время испарение происходит всегда, независимо от температуры жидкости. В этом и заключается их отличие.

    Факторы, влияющие на скорость испарения

    Учеными выделены такие основные факторы, которые имеют влияние на скорость испарения:

    • Химические и физические свойства жидкости, характер связей между молекулами, плотность вещества. Чем ближе друг к другу расположены молекулы жидкости, тем им труднее набрать нужную скорость, чтобы вылететь и тем ниже скорость испарения, и тем больше температура кипения. К слову спирты и алкоголь улетучиваются гораздо быстрее, нежели просто вода.
    • Температура. В отличии от явления кипения, испарение жидкости может происходить даже при минусовых температурах жидкости. Но все равно при понижении температуры скорость движения частиц уменьшается, и как следствие уменьшается скорость испарения.
    • Размер поверхности. Тут все просто, чем больше площадь испарения, то есть площадь соприкосновения жидкости с воздухом, тем большей будет скорость испарения.
    • Скорость ветра также может влиять на скорость испарения в природных условиях, так как быстрое движение воздуха «сдувает» молекулы с поверхности, увеличивая их скорость и кинетическую энергию.
    • Атмосферное давление, чем оно ниже, тем быстрее испаряется любая жидкость.

    Роль испарения

    И испарение, и кипение распространенные физические явления в нашей жизни. Мы постоянно сталкиваемся с ними в нашем быту, испарение активно используется в промышленности и природных условиях, как именно, читайте далее.

    Испарение в организме человека, в животных и растениях

    Испарение играет важную роль процессе саморегуляции температуры тела человека, как впрочем, и почти всех млекопитающих.

    Так как чрезмерный перегрев тела вредный, а порой и смертельный (так при температуре тела более 42,2 °C в крови человека происходит свертывание белка, что приводит к смерти) организм имеет защитный механизм для предотвращения перегрева – потоотделение. Например, когда мы болеем и имеем высокую температуру, а потом она падает, мы обильно потеем.

    Также мы потеем при тяжелом физическом труде, при перегреве на Солнце. Пот выделяется через поры кожи, а затем испаряется, все это позволяет нашему организму быстро избавиться от лишней энергии, охладить тело и нормализировать температуру.

    Аналогично это работает и у животных, а некоторые порой даже стремятся ускорить процесс испарения. Так, например собаки для этой цели в жаркую погоду открывают рот и высовывают язык. Именно гортань и язык собаки наиболее подходят для испарения влаги и охлаждения тела животного.

    Что же касается растений, то и они обладают схожим механизмом. Во избежание перегрева на Солнце они запускают процесс испарения ранее поглощенной воды, таким образом, охлаждаясь. Именно поэтому очень важно в жаркую погоду усиленно поливать культурные растения, предотвращая их выгорание или засыхание, ведь в такие дни влага особенно нужна растениями не только для питания, но и для охлаждения.

    Испарение в природе и окружающей среде

    Роль испарения в природе просто огромна, так как без этого физического явления была бы невозможна сама Жизнь на нашей планете. Именно испарение лежит в основе естественного круговорота воды, который обеспечивает экосистему Земли необходимыми питательными элементами и разносит жизненно важную влагу по всему миру. Испарение воды с поверхности рек, озер, морей и океанов создает дождевые тучи, которые затем, проливаясь дождем, питают растения и деревья.

    Именно благодаря испарению на Земле идут дожди, а о том, как они важны и как трудно без них приходится порой, спросите об этом жителей Северной Африки или Центральной Индии, которые часто страдают от засухи.

    Испарение в промышленности и быту

    Вот лишь несколько примеров использования испарения в промышленности.

    • Испарения применятся при создании охладителей для двигателей и ядерных реакторов.
    • При сушке различных вещей: от одежды до промышленного сырья.
    • При кондиционировании и очищении воздуха.
    • При очистке разных веществ на молекулярном уровне.
    • Во время готовке на пару в кулинарии.
    • При охлаждении воды.

    Промышленная техника, работающая на основе процессов испарения, конструируется по одному и тому же принципу: в ней всегда максимально увеличена площадь поверхности жидкости, чем обеспечивается наиболее оптимальный теплообмен с газовой средой.

    Испарение, видео

    И в завершение образовательное видео по теме нашей статьи.

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Эта статья доступна на английском языке – Evaporation: Definitions, Causes and Examples.

    Источник: https://www.poznavayka.org/fizika/isparenie/

    Кипение и испарение в физике

    Если оставить незакрытым сосуд с водой, то через некоторое время вода испарится. Если проделать тот же опыт с этиловым спиртом или бензином, то процесс происходит несколько быстрее. Если кастрюлю с водой нагревать на достаточно мощной горелке, то вода закипит.

    Все эти явления являются частным случаем парообразования превращения жидкости в пар. Существует два вида парообразования испарение и кипение.

    Что такое кипение

    Кипение это интенсивное парообразование, которое происходит в результате нагревания жидкости, образования в ней пузырьков пара, всплывающих на поверхность и разрывающихся там.

    Во время кипения температура жидкости остаётся постоянной.

    Температура кипения это температура, при которой жидкость кипит. Обычно, говоря о температуре кипения данной жидкости, подразумевают температуру, при которой эта жидкость кипит при нормальном атмосферном давлении.

    При парообразовании молекулы, которые отделились от жидкости, уносят из неё часть внутренней энергии. Поэтому при испарении жидкость охлаждается.

    Удельная теплота парообразования

    Физическую величину, характеризующую количество теплоты, которое требуется для испарения единичной массы вещества, называют удельной теплотой парообразования. (по ссылке более подробный разбор этой темы)

    В системе СИ единица измерения этой величины Дж/кг. Её обозначают буквой L.

    Чтобы рассчитать количество теплоты, которое потребляется при превращении в пар некоторой жидкости с удельной теплотой плавления L и массой m, применяют формулу:

    Q = m*L

    (где Q искомое количество теплоты).

    Нужна помощь в учебе?

    Предыдущая тема: Удельная теплота плавления
    Следующая тема:   Удельная теплота парообразования

    Источник: http://www.nado5.ru/e-book/isparenie-kipenie

    Понравилась статья? Поделиться с друзьями:
    Дом холодильников
    Как залить масло в компрессор

    Закрыть