Что такое гидравлика в машине — Эксперт по технике
Гидравлика мусоровозов — это гидравлическая система, установленная в спецтехнике и обеспечивающая ее функциональность и рабочие характеристики. Мусоровоз (или машина для мусора) относится к группе коммунальных машин, задачей которых является , уплотнение, транспортировка и выгрузка мусора.
Гидравлика мусоровозов зависит от многих факторов:
● Вид мусора. Гидравлическая система машин, предназначенных для сбора бытовых отходов в жилых кварталах, оснащена кузовом с объемом 6-8 м3 и несложной системой гидравлики. Для сбора и вывоза строительного или жидкого мусора требования к гидравлической системе и функциональности машины увеличиваются.
● Форма упаковки мусора. Отходы могут находиться в контейнерах, мусорных пакетах, в виде насыпи. Во всех случаях способ загрузки будет отличаться. Следовательно, требования к гидравлике мусоровозов также будут разными.
● Габариты мусора. Для габаритных отходов, кроме большой вместительности кузова, требуется наличие функции уплотнения (грузоподъемность также должна быть достаточная). Для загрузки и перемещения крупногабаритного мусора может быть использован погрузчик и самосвал (в паре) или мусоровоз с грейферным захватом.
Система гидравлики машин для сбора и вывоза отходов зависит от многих факторов:
● Способа загрузки.
● Объема кузова/бункера.
● Назначения мусоровоза.
Система гидравлики мусоровозов достаточно вариативна. Существуют и машины узко специализированной направленности, и машины универсальные. Распространенным видом оборудования считается универсальный мусоровоз. Для вывоза строительного мусора могут применяться мусоровозы типа «мультилифт».
Все мусоровозы отличаются объемом кузова, грузоподъемностью, функциональностью. Эти критерии между собой тесно связаны и влияют друг на друга. Объем кузова может быть вместительностью от 6 до 20 тонн, грузоподъемность от 2 тонн. Некоторые мусоровозы оснащены функцией прессования, (в таком случае становится важным коэффициент уплотнения).
Гидравлика мусоровозов определяется принципом загрузки: боковая или задняя. Зачастую, распространенный тип машины — с боковой загрузкой (предназначены для загрузки бытовых отходов из специальных контейнеров, установленных в каждом квартале города).
Гидравлика мусоровозов с боковой загрузкой
Машина данного типа имеет:
● Цельный кузов, изготовленный из металла, который устанавливается на надрамник. Задняя часть кузова оснащена подъемным бортом, который открывается и закрывается при помощи гидравлических цилиндров.
● Толкающую плиту с ворошителем. Она расположена в передней части кузова и предназначена для того, чтобы выравнивать отходы.
● Боковой манипулятор предназначен для захвата мусорного бака (поднятия/переворота).
● Гидравлическая и электрическая системы.
Выгрузка происходит самосвальным способом.
В комплект гидравлики на мусоровоз входит:
● Коробка отбора мощности (ее параметры зависят от КПП машины) и вал отбора мощности.
● Гидравлический насос.
● Гидрораспределительный клапан.
● Бак с креплениями. Может быть установлен сбоку или за кабиной.
● Соединительные элементы, уплотнения, кран для бака, шланги для высокого и низкого давлений и другие детали. Гидравлика мусоровозов вариативная и зависит от параметров машины и поставленных задач.
Мусоровозы с вместительным кузовом могут оснащаться дополнительными механизмами с целью оптимизации загрузки мусора.
Гидравлика мусоровоза с задней загрузкой
Мусоровозы с задней загрузкой имеют особое преимущество — качество уплотнения мусора в несколько раз выше, чем у мусоровозов с боковой загрузкой (коэффициент от 5 до 7). Достигается такой показатель благодаря специальному механизму (ручному, полуавтоматическому, автоматическому).
Мусоровоз с задней загрузкой считается эффективней в сравнении с «боковым». Машина данного типа оснащена кузовом, подающей, прессующей и выталкивающей плитами, загрузочным ковшом, а также механизмом захвата и опрокидывания. Работают данные устройства при помощи гидравлической и электрической системы.
Гидравлика мусоровоза предполагает монтаж гидравлических узлов и агрегатов при использовании минимального пространства.
Машины для сбора и вывоза мусора с задней загрузкой состоят из:
● Гидравлического бака для рабочей жидкости. Он имеет различный объем (в зависимости от параметров оборудования) и монтируется либо на боковой части рамы, либо за кабиной. В баке имеются фильтры (масляные и воздушные).
● Гидрораспределителя. Этот агрегат в системе гидравлики мусоровоза обеспечивает направление потоков рабочей жидкости (управление подъемом кузова).
● Гидравлический насос. Поршневый тип монтируют, если предполагается высокое давление в системе . Также может быть использован и шестеренчатый гидронасос.
● КОМ. Устройство обеспечивает передачу момента от трансмиссии к гидроприводу.
Ремонт и ТО гидравлики мусоровозов
Несмотря на то, что машины для вывоза мусора к месту его утилизации, эксплуатируются при небольших нагрузках, гидравлическая система подлежит регулярному техническому обслуживанию и своевременному ремонту. При невыполнении этого, оборудование будет работать медленно и давать сбои. От состояния гидравлической системы мусоровозов зависит скорость работы и количество обслуженных точек за день.
Зачастую, выходят из строя такие механизмы, как гидроцилиндр верхней крышки, захвата, наклона манипулятора (или перемещения), телескопический гидроцилиндр подъема кузова, уплотнительной плиты/опрокидывания, поворота манипулятора. При отсутствии должного ухода за техникой возможны разрушения уплотнительных элементов.
Торгово-производственное предприятие Гидравлик Лайн предоставляет услуги по проектированию, обслуживанию, ремонту гидравлики мусоровозов и другой техники. Получить бесплатную консультацию можно по телефонам, указанным на сайте.
Источник: https://kumselstroy.ru/drugie/chto-takoe-gidravlika-v-mashine.html
6.7. Простейшие гидравлические машины. Каков принцип действия гидравлической машины
РазноеКаков принцип действия гидравлической машины
Современные механизмы, машины и станки, не смотря на кажущееся сложное устройство, представляют собой совокупность так называемых простых машин – рычагов, винтов, воротов и тому подобного. Принцип работы даже очень сложных приборов основывается на основополагающих законах природы, которые изучает наука физика. Рассмотрим в качестве примера устройство и принцип работы гидравлического пресса.
Гидравлический домкрат
Что такое гидравлический пресс
Гидравлический пресс – машина, создающая усилие, значительно превосходящее изначально приложенное. Название «пресс» довольно условно: такие устройства часто действительно используют для сжатия или прессования. Например, для получения растительного масла семена масличных культур сильно спрессовывают, выдавливая масло. В промышленности гидравлические прессы применяются для изготовления изделий методом штамповки.
Но принцип устройства гидравлического пресса можно использовать и в других сферах. Самый простой пример: гидравлический домкрат – механизм, позволяющий приложением относительно небольшого усилия человеческих рук поднимать грузы, масса которых заведомо превышает возможности человека. На этом же принципе – использовании гидравлической энергии, построено действие самых разных механизмов:
- гидравлического тормоза;
- гидравлического амортизатора;
- гидравлического привода;
- гидравлического насоса.
Популярность механизмов такого рода в самых разных областях техники связана с тем, что огромная энергия может передаваться с помощью довольно простого устройства, состоящего из тонких и гибких шлангов.
Промышленные многотонные прессы, стрелы кранов и экскаваторов – все эти незаменимые в современном мире машины эффективно работают именно благодаря гидравлике.
Помимо промышленных устройств гигантской мощности, есть множество ручных механизмов, например, домкратов, струбцин и небольших прессов.
Как работает гидравлический пресс
Чтобы понять, как работает этот механизм, нужно вспомнить, что такое сообщающиеся сосуды. Этим термином в физике называют сосуды, соединенные между собой и заполненные однородной жидкостью. Закон о сообщающихся сосудах говорит, что находящаяся в покое однородная жидкость в сообщающихся сосудах находится на одном уровне.
Если мы нарушаем состояние покоя жидкости в одном из сосудов, например, доливая жидкость, или оказывая давление на ее поверхность, чтобы привести систему в равновесное состояние, к которому стремится любая система, в остальных сообщающихся с данным, сосудах повысится уровень жидкости. Происходит это на основании другого физического закона, названного по имени ученого, сформулировавшего его – закона Паскаля. Закон Паскаля заключается в следующем: давление в жидкости или газе распространяется во все точки одинаково.
На чем же основан принцип работы любого гидравлического механизма? Почему человек может с легкостью поднять автомобиль, весящий больше тонны, чтобы поменять колесо?
Математически закон Паскаля имеет такой вид:
Давление P зависит прямо пропорционально от приложенной силы F. Это понятно – чем сильнее давить, тем больше давление. И обратно пропорционально от площади прилагаемой силы.
Любая гидравлическая машина представляет собой сообщающиеся сосуды с поршнями. Принципиальная схема и устройство гидравлического пресса показаны на фото.
Представьте, что мы надавили на поршень в большем сосуде. По закону Паскаля в жидкости сосуда начало распространятся давление, а по закону о сообщающихся сосудах, чтобы скомпенсировать это давление, в малом сосуде поршень поднялся. Причем, если в большом сосуде поршень сдвинулся на одно расстояние, то в малом сосуде это расстояние будет в несколько раз больше.
Проводя опыт, или математический расчет, несложно заметить закономерность: расстояние, на которые сдвигаются поршни в сосудах разного диаметра, зависят от соотношения меньшей площади поршня к большой. Тоже произойдет, если наоборот, силу прикладывать к меньшему поршню.
По закону Паскаля, если давление, полученное действием силы, приложенной к единице площади поршня малого цилиндра, во всех направлениях распространяется одинаково, то на большой поршень будет оказываться тоже давление, только увеличенное на столько, насколько площадь второго поршня больше площади меньшего.
В этом и заключается физика и устройство гидравлического пресса: выигрыш в силе зависит от соотношения площадей поршней. Кстати, в гидравлическом амортизаторе используется обратное соотношение: большое усилие гасится гидравликой амортизатора.
Источник: https://starimpex.ru/raznoe/kakov-princip-dejstviya-gidravlicheskoj-mashiny.html
Виды гидравлики: общие классификации
Гидравлические системы используются в разнообразном оборудовании, но работа каждой из них основана на схожем принципе. В его основе лежит классический закон Паскаля, открытый еще в XVII веке. Согласно ему, давление, которое приложено к объему жидкости, создает силу. Она равномерно передается во всех направлениях и создает одинаковое давление в каждой точке.
Основа работы гидравлики любого вида — использование энергии жидкостей и возможность, приложив малое усилие, выдерживать увеличенную нагрузку на значительной площади – так называемый гидравлический мультипликатор. Таким образом, к гидравлике можно отнести все виды устройств, работающих на основе использования гидравлической энергии.
Спецтехника с гидроузламиГидрофицированные роботы на заводе «Камаз»
Виды гидравлики по сферам применения
Несмотря на общий «фундамент», гидросистемы поражают разнообразием. Начиная от базовых гидравлических конструкций, состоящих из нескольких цилиндров и трубок, и заканчивая футуристичными продуктами, в которых объединены гидроэлементы и электротехнические решения, они демонстрируют широту инженерной мысли и приносят прикладную пользу в самых разных отраслях:
- промышленности — как элемент литейного, прессового, транспортировочного и погрузочно-разгрузочного оборудования, металлорежущих станков, конвейеров;
- сельском хозяйстве — навесное оборудование тракторов, экскаваторов, комбайнов и бульдозеров управляется именно гидроузлами;
- автомобильном производстве: гидравлическая тормозная система — «must have» для современного легкового и грузового автотранспорта;
- авиакосмической отрасли: системы, независимые или объединенные с пневматикой, используются в шасси, управляющих устройствах;
- строительстве: практически вся спецтехника оснащена гидрофицированными узлами;
- судовой технике: гидравлические системы используются в турбинах, рулевом управлении;
- нефте- и газодобыче, морском бурении, энергетике, лесозаготовительном и складском хозяйстве, ЖКХ и многих других сферах.
Гидростанция к токарному станку
В промышленности (для металлорежущих и других станков) современную производительную гидравлику используют благодаря ее способности обеспечить оптимальный режим работы с помощью бесступенчатого регулирования, получать плавные и точные движения оборудования и простоты его автоматизации.
На производственных станках широко применяют системы с автоматическим управлением, а в строительстве, благоустройстве, дорожных и других работах — экскаваторы и другую гусеничную или колесную с гидрофицированными узлами. Гидросистема работает от мотора техники (ДВС или электрического) и обеспечивает функционирование навесных элементов — ковшей, стрел, вил и так далее.
Гидрофицированный экскаватор-погрузчик
Виды гидравлики с разными гидроприводами
В оборудовании для разных сфер используются гидроприводы одного из двух типов — гидродинамические, работающие преимущественно на кинетической энергии, или объемные.
Последние используют потенциальную энергию давления жидкостей, обеспечивают большое давление и, благодаря техническому совершенству, широко используются в современных машинах.
Системы с компактными и производительными объемными приводами устанавливают на сверхмощных экскаваторах и станках — их рабочее давление достигает 300 МПа и больше.
Пример техники с объемным гидроприводомРабочее колесо гидротурбины для гидроагрегата ГЭС
Объемные гидроприводы используют в большинстве современных гидросистем, устанавливаемых в прессах, экскаваторах и строительной спецтехнике, металлообрабатывающих станках и так далее. Устройства классифицируют по:
- характеру движения выходных звеньев гидромотора — оно может быть вращательным (с ведомым валом или корпусом), поступательным или поворотным, с движением на угол до 270 градусов;
- регулированию: регулируемые и нерегулируемые в ручном или автоматическом режиме, дроссельным, объемным или объемно-дроссельным способом;
- схемам циркуляции рабочих жидкостей — компактной замкнутой, используемой в мобильной технике, и разомкнутой, которая сообщается с отдельным гидробаком;
- источникам подачи жидкостей: с насосами или гидроприводами, магистральными или автономными;
- типу двигателя — электрический, ДВС в автомобилях и спецтехнике, турбины корабля и так далее.
Турбина Siemens с гидроприводом
Конструкция гидравлики разных видов
В промышленности используют машины и механизмы со сложным устройством, но, как правило, гидравлика в них работает по общей принципиальной схеме. В систему включены:
- рабочий гидроцилиндр, преобразовывающий гидравлическую энергию в механическое движение (или, в более мощных промышленных системах, гидродвигатель);
- гидронасос;
- бак для рабочей жидкости, в котором предусмотрена горловина, сапун и вентилятор;
- клапаны — обратный, предохранительный и распределительный (направляющий жидкость к цилиндру или в резервуар);
- фильтры тонкой очистки (по одному на подающей и обратной линии) и грубой очистки — для удаления примесей механического характера;
- система, управляющая всеми элементами;
- контур (емкости под давлением, трубопроводная обвязка и другие компоненты), уплотнители и прокладки.
Классическая схема раздельноагрегатной гидросистемы
В зависимости от вида гидросистемы, ее конструкция может отличаться — это влияет на сферу применения устройства, его рабочие параметры.
Стандартный рабочий гидроцилиндр тормоза для комбайна «Нива СК-5»
Виды конструктивных элементов гидросистемы
Прежде всего, важен тип привода — части гидравлики, преобразующей энергию. Цилиндры относятся к роторному типу, и могут направлять жидкости только в один конец или в оба (однократное или двойное действие соответственно). Усилие их направлено прямолинейно. Гидравлика открытого типа с цилиндрами, которые сообщают выходным звеньям возвратно-поступательное движение, используется в мало- и среднемощном оборудовании.
Спецтехника с гидродвигателем
В сложных промышленных системах вместо рабочих цилиндров устанавливают гидродвигатели, в которые из насоса поступает жидкость, а затем возвращается в магистраль.
Гидрофицированные моторы сообщают выходным звеньям вращательное движение с неограниченным углом поворота. Их приводит в действие рабочая гидравлическая жидкость, поступающая от насоса, что, в свою очередь, заставляет вращаться механические элементы.
В оборудовании для разных сфер устанавливают шестеренчатые, лопастные или поршневые гидромоторы.
Радиально-поршневой гидромотор
Потоками в системе управляют гидрораспределители — дросселирующие и направляющие. По особенностям конструкции их делят на три разновидности: золотниковые, крановые и клапанные. Наиболее востребованы в промышленности, инженерных системах и коммуникациях гидрораспределители первого типа. Золотниковые модели просты в эксплуатации, компактны и надежны.
Гидронасос — еще один принципиально важный элемент гидравлики. Оборудование, преобразующее механическую энергию в энергию давления, используют в закрытых и открытых гидросистемах. Для техники, работающей в «жестких» условиях (бурильной, горнодобывающей и так далее) устанавливают модели динамического типа — они менее чувствительны к загрязнениям и примесям.
Гидравлический насосГидронасос в разрезеПара гидронасос-гидромотор
Также насосы классифицируют по действию — принудительному или непринудительному. В большинстве современных гидросистем, использующих повышенное давление, устанавливают насосы первого типа. По конструкции выделяют модели:
- шестеренчатые;
- лопастные;
- поршневые — аксиального и радиального типов.
- и др.
Гидрофицированные манипуляторы для 3D-печати
Существует огромное количество видов использования законов гидравлики — изготовители придумывают новые модели техники и оборудования. Среди наиболее интересных — гидросистемы, устанавливаемые в манипуляторах для 3D-печати, коллаборативных роботах, медицинских микрофлюидных устройствах, авиационном и другом оборудовании. Поэтому любая классификация не может считаться полной — научный прогресс дополняет ее чуть ли не каждый день.
pi4 workerbot — ультрасовременный индустриальный робот, воспроизводящий мимику
Гидравлический манипулятор, распечатанный на 3D-принтере
Источник: https://hydro-test.ru/statyi/vidy-gidravliki-klassifikacii/
Основы гидравлики
Гидравлические машины — устройства для преобразования механической энергии в энергию потока и наоборот — для преобразования энергии движущейся жидкости в механическую энергию.
По функциональному назначению гидравлические машины подразделяют на две основные группы:
- насосы;
- гидравлические двигатели.
***
Насосы
Насосы являются одной из самых распространенных разновидностей машин, применяемых практически во всех отраслях машиностроения, строительства, промышленности и сельского хозяйства.
Их применяют в гидромеханических конструкциях многих механизмов и агрегатов, в трубопроводах разного назначения (нефтепроводы, газопроводы, транспортные трубопроводы и т. п.), в системах водоснабжения, отопления, охлаждения, вентиляции, в котельных установках, бытовой технике и т. д.
Насосы (как и гидродвигатели) применяют в гидропередачах, где основным элементом является гидравлический привод, назначение которого состоит в передаче энергии жидкости от насоса к исполнительному рабочему органу (гидромотору, гидроцилиндру и т. п.).
Несколько иное назначение у насосов, применяемых для транспортировки жидкостей и газов (иногда — помещенных в жидкую или газообразную среду твердых объектов) по трубопроводам — здесь насосы служат для сообщения энергии движения транспортируемому веществу.
Насос преобразует механическую энергию приводного двигателя (электрического, теплового двигателя, ручного привода и т. п.) в энергию потока рабочей жидкости, т. е. насос является источником питания гидравлического привода или гидросистемы.
Согласно ГОСТ 17398-72 «Насосы. Термины и определения» по принципу действия и по виду сообщаемой жидкости энергии насосы подразделяют на две основные группы:
- насосы динамические;
- насосы объемные.
Динамические насосы преобразуют механическую энергию приводного электродвигателя преимущественно в кинетическую энергию потока рабочей жидкости за счет увеличения ее скорости.
К динамическим относят насосы, перемещающие жидкость посредством увеличивающего ее кинетическую энергию силового воздействия (лопатки и лопасти рабочего колеса, внешнее силовое поле, внешний поток, обладающий большей кинетической энергией и т. п.).
Характерная особенность динамических насосов — перемещающаяся в них жидкость имеет постоянное сообщение с входным и выходным патрубками, что конструктивно отличает их от насосов второй группы — объемных.
К динамическим относятся лопастные насосы, электромагнитные (использующие магнитное поле для ускорения потока жидкости), а также насосы, использующие силы трения и инерции (струйные, вихревые, лабиринтные, шнековые, червячные и т. п.).
Особую группу широко распространенных динамических насосов составляют насосы лопастные, передающие энергию жидкости посредством вращающегося рабочего органа — лопастного колеса.
Передача энергии в таких насосах осуществляется при динамическом взаимодействии лопастей колеса с обтекающей их жидкостью.
К лопастным относятся насосы центробежные, осевые и диагональные. Центробежными называют лопастные насосы с движением жидкости через рабочее колесо от центра к периферии, осевыми — лопастные насосы с движением жидкости через рабочее колесо вдоль его оси.
Примером осевого лопастного насоса может послужить водометный движитель судна, винт которого является рабочим колесом.
***
Объемные насосы предназначены для преобразования механической энергии приводного электродвигателя преимущественно в потенциальную энергию потока рабочей жидкости за счет увеличения ее давления.
К объемным относят насосы, принцип работы которых основан на увеличении внешнего давления на замкнутый объем жидкости со стороны ограничивающих замкнутый объем поверхностей, и периодическим вытеснением жидкости из замкнутого объема в выходной патрубок (напорную магистраль).
Увеличение давления осуществляется за счет уменьшения замкнутого объема по пути переноса жидкости от входной (питающей) магистрали к напорной магистрали. При этом замкнутый объем попеременно сообщается то с входом (питающей магистралью), то с выходом (напорной магистралью) насоса.
Примеры наиболее распространенных конструкций объемных насосов: поршневые, плунжерные, диафрагменные, роторные и шестеренные.
К объемным насосам также относятся некоторые специальные устройства, служащие для подъема и перемещения жидкостей:
- гидравлические тараны, работа которых основана на принципе использования давления, получающегося при гидравлическом ударе;
- эрлифты — устройства для подъема жидкостей в скважинах посредством нагнетания воздуха в скважины и создания разности объемных масс в столбе воздухонасыщенной поднимаемой жидкости и жидкости, окружающей этот воздухонасыщенный столб.
Применение насосов для хозяйственных нужд человека известно с древних времен. Первые конструкции этих машин использовали мускульный (ручной или с использованием животных) привод и предназначались для водозабора из скважин, водоемов и т. п. В настоящее время разработаны сотни разнообразных конструкций насосов, способных удовлетворить самые разнообразные потребности в машиностроении, медицине, технике, строительстве и других областях человеческой деятельности.
По создаваемому напору различают низконапорные (до 20 м), средненапорные (20..60 м) и высоконапорные (свыше 60 м) насосы.
Кроме того, насосы классифицируют по мощности и подаче (микронасосы, мелкие, малые, средние, крупные), по быстроходности (тихоходные, нормальные, быстроходные), по конструктивным и некоторым другим параметрам.
***
Гидравлические двигатели
Гидравлический двигатель преобразует энергию потока рабочей жидкости, получаемой от насоса, в механическую энергию выходного звена (например, штока цилиндра или вала гидравлического мотора), которые непосредственно или через механическую передачу приводят в действие рабочий орган машины.
Таким образом, двигатель является потребителем энергии жидкости в гидравлическом приводе.
Гидравлические двигатели, как правило, имеют «конструктивных близнецов» среди насосов, т. е. большая часть известных конструкций гидравлических насосов может быть использована в качестве гидродвигателя.
Это означает, что практически любой насос может выполнять две функции — передавать энергию жидкости от механических устройств, или отбирать ее у движущейся жидкости, передавая механическим устройствам.
По этой причине гидродвигатели, как и гидронасосы, можно классифицировать на две основные группы — динамические (крыльчатки, турбины и т. п.
) и объемные (по аналогу с объемными насосами).
Несколько особняком стоят объемные гидравлические двигатели — гидроцилиндры, которые, впрочем, тоже можно использовать и в качестве насосов.
***
Основными рабочими параметрами, характеризующими гидравлические машины и режимы их работы, являются напор (или давление), подача (для насоса) или расход (для гидродвигателя), мощность (потребная и полезная), а также коэффициент полезного действия.
***
Объемные насосы
Олимпиады и тесты
Источник: http://k-a-t.ru/gidravlika/10_gidro_mashiny_1/
Гидравлические машины
Гидравлические машины в принципе своей работы основываются на применении закона Паскаля, который говорит, что давление, производимое на жидкость, передается внутри неё во все стороны с одинаковой силой.
Что же такое гидравлический агрегат? Гидравлический — значит работающий за счет давления или движения жидкости, например воды.
В этой статье мы собрали для Вас принцип действия и основные схемы наиболее часто применяемых гидростатических машин.
Гидравлический пресс применяется для получения больших сжимающих усилий, которые необходимы, например, для деформации металлов при обработке давлением (прессование, ковка, штамповка), при испытании различных материалов, уплотнении рыхлых материалов и т.д.
Схема и принцип действия
Самая простая схема гидравлической машины, такой как гидравлический пресс состоит из двух цилиндров А и В (малого и большого диаметра), соединенных между собой трубкой С. Такая схема похожа на работу сообщающихся сосудов.
В малом цилиндре расположен малый поршень гидравлической машины D, соединенный с рычагом ОКМ, имеющим неподвижную шарнирную опору в точке О, а в большом цилиндре – большой поршень гидравлической машины (плунжер) Е, составляющий одно целое с платформой F, на котором расположено прессуемое тело G.
Рычаг приводится в действие вручную или при помощи специального двигателя. При этом поршень D начинает двигаться вниз и оказывать на находящуюся под ним жидкость давление, которое передается на поршень Е и заставляет его вместе со столом двигаться до тех пор, пока тело G не войдет в соприкосновение с неподвижной плитой Н.
При дальнейшем подъеме стола начинается процесс прессования (сжатия) тела G.
Если данное устройство служит не для прессования, а только для поднятия груза, т.е. представляет собой так называемый гидравлический подъемник, то неподвижная плита Н в этом случае оказывается лишней и из конструкции исключается.
Вместе с указанными на схеме частями гидравлический пресс снабжается всасывающим и нагнетательным клапанами, регулирующими работу пресса, и клапаном, предохраняющим его от разрыва при чрезмерном возрастании давления (на схеме клапаны не показаны).
Сила давления, КПД и формула машины
Установим основные соотношения, определяющие работу пресса. Пусть усилие, действующее на конец М рычага ОКМ, будет называться Q, а плечи рычага ОК = a, КМ = b. Тогда, рассматривая равновесие рычага и составляя уравнение моментов относительно его центра вращения О выводим уравнение
Q*(a+b) = P1*a,
Находим силу передаваемую на поршень D малого цилиндра
P1 = Q*(a+b) / a
и создаваемое в жидкости добавочное гидростатическое давление
ρ= P1 / (πd12 / 4)
где d1 – диаметр малого цилиндра.
Давление ρ передается на поршень Е большого цилиндра, в результате чего полная сила давления на этот поршень, обусловленная силой Q, будет
P2 = ρ *(πd22 / 4) = Q (d2 / d1)2 * (a+b) / a,
где d2 – диаметр большого цилиндра.
Из этого выражения видно, что сила P2 может быть получена сколько угодно большой путем выбора соответствующих размеров цилиндров и плеч движущего рычага.
На самом деле действительная сила P2, передаваемая на стол и осуществляющая процесс прессования, оказывается несколько меньше из-за неизбежных потерь энергии на преодоление трения в движущихся частях пресса и утечек жидкости через различные неплотности и зазоры.
Эти потери учитываются введением в формулу коэффициента полезного действия – КПД. Таким образом формула гидравлической машины
P1 = КПД * Q (d2 / d1)2 * (a+b) / a,
Практически этот коэффициент имеет значение от 0,75 до 0,85.
В современных гидравлических прессах можно получить очень большие давления (до 25 000 т.). В таких конструкциях малый цилиндр выполняют обычно в виде поршневого насоса высокого давления, подающего рабочую жидкость (воду или масло) в большой цилиндр (собственно пресс), часто с добавлением в схему специального устройства – гидравлического аккумулятора, выравнивающего работу насоса.
Гидравлический аккумулятор
Как показывает название – гидравлический аккумулятор служит для аккумулирования, т.е. накапливания, собирания энергии. Он применяется на практике в тех случаях, когда необходимо выполнить кратковременную работу, требующую значительных механических усилий, например, поднять большую тяжесть, открыть и закрыть ворота шлюзов и т.п.
Наиболее широкое применение гидравлические аккумуляторы получили при работе гидравлических прессов, используемые здесь как установки, накапливающие жидкость в период холостого хода пресса и отдающие ее при рабочем ходе, когда подача насосов оказывается недостаточной.
Гидравлический аккумулятор состоит из цилиндра А, в котором помещен плунжер В, присоединенный своей верхней частью к платформе С, несущей груз большого веса. В аккумулятор по трубе D насосом нагнетается жидкость (вода или масло), которая поднимает вверх плунжер с грузом. При достижении крайнего верхнего положения насос автоматически выключается.
Обозначим вес плунжера с грузом через G, а его полную высоту подъема через Н. Тогда энергия, запасенная аккумулятором при полном подъеме плунжера, будет равна G*H, а создаваемое им в жидкости гидростатическое давление
P = G / F,
где F – площадь сечения плунжера
Под таким постоянным давлением находящаяся в аккумуляторе жидкость подводится по трубе Е к гидравлическим машинам – например, прессовым машинам, обеспечивая тем самым их работу с постоянной нагрузкой.
Гидростатическое давление, создаваемой аккумулятором, будет тем больше, чем меньше площадь сечения плунжера.
Однако при чрезмерном уменьшении сечения плунжера последний может оказаться недостаточно прочным. Поэтому при необходимости получения очень больших давлений применяются так называемые дифференциальные аккумуляторы со ступенчатым поршнем.
В этом случае давление на жидкость, находящуюся в цилиндре А, передается через небольшую площадь кольцевого уступа ступенчатого поршня, пропущенного сквозь обе крышки цилиндра (верхнюю и нижнюю), и следовательно, сечение поршня может быть выбрано такого размера, при котором обеспечивается необходимая прочность.
Гидравлическая турбина
Гидравлические двигатели служат для преобразования гидравлической энергии потока жидкости в механическую энергию, получаемую на валу двигателя и используемую в дальнейшем для различных целей, в основном для привода рабочих машин.
Наиболее распространенным представителем этой группы является гидравлическая турбина. Гидравлические турбины обычно для устанавливаются на гидроэлектрических станциях, где они служат приводом электрических генераторов.
Энергия воды преобразуется в турбине в механическую энергию на валу. Вал приводит в движение ротор электрогенератора и механическая энергия превращается в электрическую.
Насос
В насосах, применяемых для подъема и перемещения жидкости по трубопроводам, происходит обратный процесс. Механическая энергия, подводимая к насосам от двигателей, приводящих насосы в действие, преобразуется в гидравлическую энергию жидкости.
На рисунке схематично изображены А – турбинная установка
Б – насосная установка
Источник: https://www.nektonnasos.ru/article/gidravlika/gidravlicheskie-mashiny/
Гидромоторы виды и принцип работы
- 1 Устройство гидромотора
- 2 Особенности, типы гидромоторов и гидронасосов
- 3 Гидромотор: что это, как работает и где применяется
- 4 Гидромотор – устройство, работа, ремонт
- 5 Как выбрать гидромотор?
- 6 Гидромоторы — полезная информация
Гидромотор регулируемый аксиально-поршневой,устройство гидромотора, работа гидромотора, характеристики ипозиция гидромоторов на мировых рынках техники. Эту и другуюинформацию можно найти и изучить на страницах нашего сайта. Спомощью наших усилий мы стараемся предоставлять вам самыенеобходимые данные по гидрооборудованию.
Сейчас узнаем что такое гидромотор, какие бывают виды,устройство гидромотора, и правила эксплуатации.
Гидромотор (мотор гидравлический) –гидравлический двигатель предназначенный сообщать выходному звенувращательного движения на бесконечный угол поворота. Принцип работыгидромотора заключается в том, что в данном гидравлическоммеханизме на вход под давлением подаётся рабочая жидкость, а навыходе, крутящий момент снимается с вала.
Гидрораспределительвыступает главным устройством, которое управляет движением валагидромотора, также управление возможно с помощью средстврегулирования гидропривода.
Общее устройство гидромотора
Устройство гидромотора можно рассмотреть напримере аксиально-поршневого агрегата, который является наиболеечасто используемым в гидравлике. Его устройство основано накривошипно-шатунном механизме, где цилиндры двигаются параллельнодруг другу, и одновременно вместе с цилиндрами двигаются поршни.Также одновременно, за счёт вращения вала кривошипа, поршнипередвигаются относительно цилиндров.
Устройство гидроцилиндров аксиально-поршневого вида выполняетсяпо одной из двух принципиальных схем:
- Схема с наклонным боком цилиндров
- Схема с наклонным диском
Гидромотор, который укомплектован наклоннымдиском, состоит из блока цилиндров. Его ось совпадает с осьюведущего вала. У него под углом находится ось диска, с которойсвязаны поршневые штоки. Таким образом, ведущим валом приводится вовращение блок цилиндров.
Основные параметры гидромотора – это рабочеедавление, рабочий объем, частота вращения и крутящиймомент.
Гидромотор регулируемый предназначен дляустановки в гидрообъемных приводах машин для привода исполнительныхмеханизмов. Он имеет широкий диапазон рабочего объема, разные видыуправления и регулирования. Рабочий объем в исходном состоянииможет быть максимальным и минимальным, а управление – позитивнымили негативным.
Устройство регулируемого гидромотора
Устройство регулируемого гидромотора можно рассмотреть напримере гидравлического механизма Серии 303. И первое чтоотметим из особенностей, так это то, что гидромотор данного типафункционально состоит из 2-х узлов:
Регулятор гидромотора регулируемого предназначен для того,чтобы изменять рабочий объем гидромеханизма за счет измененияугла наклона цилиндрового блока. Сам регулятор представляет собойдеталь, которая включает: ступенчатый поршень, установленный вкорпусе, палец – зафиксированный в поршне винтом, золотник сбашмаком и подпятником, рычаг и крышку, в которой размещены детали.Эти детали обладают разными функциональными назначениями.
Качающий узел гидромотора состоит из вала, установленного вкорпусе на подшипниках, и блока цилиндров. На стороне конца валагидромотор закрывается крышкой, которая уплотняется манжетой ирезиновым кольцом. Фланец вала соединен с поршнями и шипом спомощью сферических головок шатунов.
Гидромотор регулируемый предназначен для привода механизмов сдискретным диапазоном регулируемых скоростей.
Гидромотор регулируемый, как и любоедругое гидрооборудование, активно используется во многих отрасляхпромышленности, где есть гидравлическая система. Механизм с явнымидоказательствами упрощает схему обслуживания всей системы, и приэтом увеличивает мощность, а тем самым и производство. В целом,гидравлика сегодня представляет собой незаменимую силовую имеханическую технологию, применяемую для больших и малыхдвигательных агрегатах.
Виды гидромотора:
- Аксиально-плунжерный (аксиально-поршневой)
- Радиально-плунжерный (радиально-поршневой)
- Шестеренный
- Пластинчатый
Эти 4 вида гидромоторов считаются наиболеераспространенными, так как имеют широкое применение вгидрооборудовании, практичные, и имеют большую производительностьпри своих малых габаритах.
Гидромотораксиально-поршневой – практически самый распространенныйгидравлический механизм, который имеет широкое применение вгидравлике. Причина в том, что он отличается рядом преимущественныхфакторов: небольшая масса, меньшие радиальные размеры, также меньшегабарит и момент инерции вращающихся масс, есть возможность работыс большим числом оборотов, и еще такой гидромотор удобен в монтажеи ремонте, что придает некую комфортность и экономит время.
Другими словами это можно назвать, как обладаниеуниверсальностью и высокой удельной мощностью. Гидромотор аксиально-поршневой может выполнятьмножество функций, от привода ходовой части и транспортировкиматериалов до вспомогательных функций. Изготовленный гидромотор спрецизионной точностью гарантирует передачу сил, и имеетрегулировочные характеристики, которые требуются в процессефрезерования.
Устройство гидромотора аксиально-поршневого
Поршень гидромотора, поворачиваясь на 180 ° вокруг своей оси,совершает движения поступательного характера, выталкивая жидкостьиз цилиндра. Уже при последующем повороте на 180 ° поршеньсовершает вход, и тем самым всасывание.
Блок цилиндров своейторцевой поверхностью прилегает к гидрораспределителю спроделанными полукольцевыми пазами. Пазы соединяются поотдельности, один — с напорным трубопроводом, другой — совсасывающим.
Сам же блок цилиндров оснащен отверстиями, которыесоединяют каждый цилиндр с гидрораспределителем.
Гидромотор аксиально-поршневой используется в объемныхгидроприводах, в которых частота вращения вала очень важна, ана выходе требуется получить высокий крутящий момент. Данныймеханизм эксплуатируется в технике и агрегатах, которые имеютбольшие нагрузки. Это сельхозтехника, карьерная техника,строительная и коммунальная техника, экскаваторы, бульдозеры ит.д.
Гидромотор регулируемыйаксиально-поршневой таких импортных производителей, какBosch Rexroth, Kawasaki, Parker, Eaton, Sumhydraulik,Hydromatik, Sauer Danfoss, Linde считаются наиболеераспространенными и востребованными на территории стран СНГ.
Следует помнить, что выпускается большое количество видовгидромоторов с различными характеристиками. И все они применяются вопределенных агрегатах. Каждый вид гидромоторов необходимоприменять на строго определенных машинах, для которых онипроизведены. Потому, как устройство каждого вида гидромотораотличается от другого.
Источник: https://tkazimut.com/gidromotory-vidy-i-printsip-raboty/
Что такое гидравлика? Определение и понятие
Гидравлические механизмы относятся к старейшим системам, применяемым в практической инженерии. Сам по себе принцип механизированного действия постепенно утрачивает актуальность, поскольку его вытесняют более технологичные приводные средства.
Но в силу ограниченности возможностей интеграции новых и более дорогих решений, во многих сферах сохраняет свои позиции и традиционная механика.
Что такое гидравлика в современном контексте эксплуатации? Это инфраструктура, которая задействуется в машинах, конструкциях и сооружениях, обеспечивающая достаточное усилие для приведения в действие функциональных узлов и агрегатов.
Базовое определение гидравлики
С точки зрения науки, гидравлика – это раздел знаний, освещающий законы движения и равновесия жидкостей. Водная среда в тех или иных формах является главным аспектом изучения в этом направлении. Кроме теоретических исследований ученые занимаются и экспериментальными испытаниями, результаты которых формируют основу для решения задач прикладной инженерии. Научные работы посвящаются закономерности движения воды по трубопроводным каналам, в речных руслах и гидромашинах.
Но для полного понимания, что такое гидравлика в научном контексте, нельзя обойтись и без смежных дисциплин, инструментарий которых затрагивается в ходе исследования. К таким можно отнести физику, математику и механику. Также выделяется два направления изучений гидравлики – в динамическом и статичном контекстах. Гидродинамика затрагивает вопросы кинематики воды как таковой, а гидростатика больше ориентируется на законы взаимодействия жидкостей с другими средами и телами.
Все же известность гидравлики как раздела науки не так широка по сравнению с ее производными в практической сфере. На тех же прикладных знаниях базируются проекты инженерных систем – например, одним из старейших продуктов гидравлики является акведук. В наши дни законы энергии жидкостей ложатся в основу разработок канализационных систем, поршневого оборудования, водоснабжения и т. д.
В большинстве случаев работа гидравлики такого типа организуется как двигательная сила для приведения в действие обслуживаемых агрегатов. Классическим примером являются гидромашины.
В целом можно вывести такое определение инженерной гидравлики – совокупность элементов механической конструкции, устройство которой предполагает использование жидкости в качестве активной природной среды. Но это не означает, что вода является источником усилия.
Она лишь транслятор энергии, которая ей придается другими механизмами, которые, в свою очередь, активизируются посредством электродвигателей и силовых агрегатов на жидкостном или твердотельном горючем.
Типы гидравлических конфигураций
Рабочий цикл гидромашины зависит от схемы, по которой циркулирует вода. Этот контур как раз и обуславливает момент работы воды, в процессе которого она приобретает энергию от двигателя и передает ее другим компонентам системы. В этом контексте можно выделить два типа циркуляционных конфигураций – с открытым и закрытым центрами.
В первом случае гидрораспределитель жидкости в процессе работы поршня обеспечивает двойной выход. То есть показатели давления меняются в зависимости от текущего положения поршня, а жидкость может отправляться в рабочий цикл или обратно в клапан. Ее перемещение регулирует связка поршня и клапана.
Для понимания принципа работы закрытой системы надо вернуться к определению того, что такое гидравлика, и как она взаимодействует с силовыми агрегатами. Поскольку гидравлика является лишь инфраструктурой, которую организуют функциональные узлы, обслуживающие жидкость, то вполне логично, что энергия рабочей среды может полностью зависеть от действия технической оснастки. В данном случае эту задачу выполняют насосы и клапаны, полностью замыкающие контур циркуляции.
Классификация по видам приводов
Различаются системы, обеспеченные нерегулируемым и регулируемым приводными механизмами. Типовым считается нерегулируемый гидропривод, в котором показатель давления насоса всегда соответствует установленным значениям. Зафиксированные данные обязательно должны быть выше, чем предельный уровень нагрузочного давления. То есть создается планка показателя, на которую равняется насос.
К недостаткам данного механизма относят большие потери в мощности, так как постоянное поддержание высокого давления при незначительных нагрузках нерационально. По такой схеме, к примеру, иногда выполняется гидравлика экскаватора, управляющая опорными элементами.
Поскольку на эту функцию ложится высокая ответственность с точки зрения безопасности, то производители жертвуют избытками мощностной отдачи. Однако в одном и том же экскаваторе нерегулируемый привод опор может дополняться регулируемой системой, которая будет оптимизировано отвечать за работу навесного оборудования.
Данный тип гидропривода предусматривает снижение давления насоса и его балансировку за счет клапанов и компенсаторов с направленным действием.
Гидравлические аккумуляторы
Применяются механизмы извлечения энергии жидкости и в аккумулирующих устройствах. Такие системы называются гидроемкостными и генерируют энергию воды, которая в момент работы находится под давлением. При этом сам аккумулятор чаще всего является составной частью механического гидропривода.
Существуют разные типы таких устройств – в частности, пневматические и пружинные. В промышленности используется и аккумулирующая гидравлика высоких давлений, на мощностях которой осуществляются простые, но требовательные к нагрузкам манипуляции с грузами. Независимо от типа гидроаккумулятор должен поддерживать давление на определенном уровне, вместе с этим исключая утечки и сглаживая вибрации за счет демпфирующего эффекта.
Машины на гидравлических системах
Наиболее распространены такие механизмы в машинах с навесным оборудованием – в тех же экскаваторах, тракторах и уборочных автомобилях. Широко применяют гидравлику в своих моделях конструкторы Минского тракторного завода (МТЗ).
Стандартная комплектация, которая используется в этих тракторах, включает насосы, гидрораспределитель, цилиндры и трубопровод.
Рабочий цикл, который обеспечивает гидравлика МТЗ, можно представить так: жидкость поступает от емкости к насосам, переправляется к распределителям, входит в поршневую группу и возвращается в бак.
На этапе перехода от гидрораспределителей к цилиндрам к регуляции процесса подключается оператор оборудования, который посредством рычагов контролирует поступление жидкости в поршневые группы в зависимости от текущих задач.
Обслуживание гидравлических механизмов
Профилактическое обслуживание обычно сводится к операциям смазки отдельных деталей и компонентов гидравлической системы. В процессе осмотра ответственное лицо также выявляет признаки износа, деформации и повреждения. Как правило, ремонт гидравлики сводится к замене гильз поршней, штоков и крышек. В регулярном порядке обновляются расходники в виде уплотнительных колец.
Заключение
Гидравлика – это один из простейших способов получения механического усилия доступными средствами. Для понимания, что такое гидравлика, и какую пользу она приносит рядовому пользователю, можно привести в качестве примера насосное оборудование. Садовые станции перекачки воды действуют на принципах гидравлической инженерии, затрачивая минимум энергии. На более высоком уровне по аналогичным схемам работают компрессорные установки и пневматический инструмент.
Источник: https://FB.ru/article/315855/chto-takoe-gidravlika-opredelenie-i-ponyatie
Достаточно ли Вы знаете о гидравлике для автомобиля?
Гидравлическое оборудование нашло широкое применение во многих производственных отраслях. Этому поспособствовала его высокая эффективность и функциональность, простота в эксплуатации, нетребовательность в обслуживании. Оно позволяет увеличивать объемы выпускаемой продукции, повысить ее качество, безопасность рабочих мест, автоматизировать работу и все это при сохранении потребления энергетических ресурсов.
Наибольшее распространение гидравлические системы получили в сельском хозяйстве, машиностроении, строительных компаниях, металлургии, дорожных работах, коммунальной отрасли, лесозаготовительном хозяйстве и пр.
Им комплектуются вакуумные машины, асфальтоукладчики, автобетоносмесители, снегоочистительные авто, мусоровозы, тягачи, пожарные автомобили, автоцистерны, автовышки, автогрейдеры, эвакуаторы и автовозы, крупнотоннажные фургоны и пр.
Гидрофикация тягача Игорь Меньшов
С их помощью также можно расширить функциональные возможности специализированной техники. Машины, используемые в дорожно-строительных, ремонтных, складских работах, сельском и коммунальном хозяйстве, имеют узкую специализацию. Для выполнения полного спектра задач требуется покупать разные виды машин. Но это большие материальные траты, дорогостоящее обслуживание, сложности с хранением.
Избежать таких проблем помогает гидрофикация спецтранспорта. Благодаря дополнительному навесному оборудованию, экскаватор сможет выполнять работы различного назначения, начиная от общестроительных и дорожных и вплоть до переработки мусора, сноса старых строений. И это относится к разным видам спецтехники.
Гидравлическое навесное оборудование устанавливается на тягачи, мини-погрузчики, трактора и пр.
Как работает эта система? Какие ключевые узлы обеспечивают ее функционирование? В чем основные преимущества и есть ли недостатки у гидрооборудования?
Как работает гидравлическая система
Конструктивно гидравлическая система состоит из таких ключевых узлов:
- коробки отбора мощности (КОМ);
- гидравлического насоса;
- гидравлического распределителя;
- масляного бака;
- блока управления.
В комплект поставки также входят соединительные шланги, фитинги, переходники.
Если говорить научными терминами, то задача гидравлической системы состоит в преобразовании механической энергии двигателя авто в гидравлическую. А происходит все это следующим образом.
Гидравлическая система приводится в действие двигателем автомобиля. Его крутящий момент изначально передается на коробку переключения передач, а далее – на КОМ, которая и приводит в действие гидронасос. Он работает преимущественно на масле и создает необходимое давление в системе.
Сжатая рабочая жидкость по трубопроводам поступает в гидравлические механизмы, приводя их действие. Управление системой осуществляется или кнопками, или джойстиком, установленным в кабине водителя. После совершенного действия масло снова возвращается в бак и цикл повторяется заново.
Если хотите, чтобы ваша гидросистема работала стабильно, без сбоев и проблем, особое внимание обратите на насос, который по праву можно назвать «сердцем» узла.
Полезная информация о насосах
Гидравлический насос – ключевой узел, обеспечивающий движение жидкости и работу всей системы в целом. От качества его работы зависит стабильность и надежность функционирования узла. Поэтому в процессе работы гидравлического оборудования специалисты оценивают такой критерий, как эффективность насоса. По этому показателю определяется то, насколько хорошо агрегат справляется со своими обязанностями.
Гидравлический насос Игорь Меньшов
- эффективность подачи жидкой среды;
- механическая эффективность (эффективность крутящего момента);
- полная эффективность.
Эффективность подачи масла
Под данным параметром понимают отношение реальной подачи насоса к теоретической. Выражается данный параметр в процентах. При работе оборудования действительные показатели всегда будут ниже теоретических. Это связано с внутренним перетеканием масла сквозь рабочие элементы. В их конструкции предусмотрены дополнительные отверстия для смазки, через которые жидкость и просачивается.
Но здесь надо знать допустимые параметры. В норме, эффективность подачи шестеренчатого насоса составляет в среднем 75-85%, поршневого – выше, 85-95%. Эти коэффициенты обязательно следует учитывать при выборе гидравлического насоса.
Только так вы сможете приобрести оборудование, которое обеспечит стабильную и эффективную работу узла. Так, если для вашего навесного оборудования необходим насос мощностью 100 л.с., то с учетом коэффициента эффективности 90%, требуемый показатель будет уже 110 л.с.
Такой запас гарантирует стабильность работы гидрооборудования.
Если показатели вашего насоса окажутся ниже 75-95%, говорится, что эффективность насоса снизилась. Это может быть связано с повышенным износом механизма. Особенно актуально для агрегатов, изготовленных с минимальным допуском.
Механическая эффективность
Определяется как эффективность крутящего момента. Это соотношение выходящего крутящего момента к входящему. В процессе работы оборудования он снижается. И связано это с трением подвижных элементов. На них крутящий момент и теряется. В среднем такая эффективность составляет около 90%.
Полная эффективность
Так как задача гидронасоса состоит в преобразовании механической мощности в гидравлическую, то и его полная эффективность будет рассчитываться как отношение этих параметров. Разделите входящую мощность на выходящую, и получите коэффициент. Чем ближе он окажется к 1, тем более эффективным является ваш насос.
В то же время полная эффективность складывается из эффективности подачи и эффективности крутящего момента. Выходящие показатели всегда будут ниже входящих, что связано с потерями в наносе ввиду внутреннего перетекания и трения вращающихся элементов.
В цифрах эти выглядит так: полная эффективность насоса мощностью 100 л.с. с эффективностью подачи 85% и эффективностью крутящего момента 90% составит 76,5% или 76,5 л.с.
Что приводит к снижению эффективности насоса
Снижение эффективности гидронасоса негативным образом сказывается на результативности работ исполнительного механизма.
Наиболее часто проблемы с этим агрегатом случаются ввиду чрезмерной загрязненности масла. Рабочая жидкость быстро накапливает разные загрязнения, разнося их по всему контуру. Это и твердые частички грязи, и песчинки, и мельчайшие металлические элементы. Все это абразивные вещества, которые приводят к чрезмерному износу внутренних деталей, увеличивая перетекания, снижая механическую, а вслед за ней и полную эффективность насоса.
Еще одна причина проблем в работе оборудования – кавитация. Это когда масло не полностью заполняет предназначенное для него пространство. В результате в нем появляются пузырьки воздуха.
Они образуются в области низкого давления и вместе с рабочей средой сжимаются, переходя в зону высокого давления, где и начинают разрываться, сопровождаясь сильной вибрацией насоса и повышенной шумностью его работы. Долго работать в режиме кавитации оборудование не сможет.
Взрывы пузырьков воздуха будут повреждать мелкие металлические элементы, унося их частички вместе с рабочим потоком. А это уже грозит оборудованию серьезными механическими повреждениями.
Сильные и слабые стороны гидравлических систем
Гидравлические системы нашли широкое применение практически по всех промышленных отраслях. Они применяются в прессах, литьевых машинах, станках, больших манипуляторах, формовочных машинах, используемых при производстве пластмасс, роботах. Гидравлика задействована в горно- и нефтедобывающей промышленности, обеспечивает работу раздвижных мостов и шлюзовых ворот, спасательного оборудования.
Не менее широко она применяется и в узкоспециализированных отраслях, в частности в оборудовании технологического контроля, пилотажных и других видах тренажеров, ветровых турбинах электростанций, разнообразных испытательных центрах.
Невозможно без гидравлического оборудования представить функционирования суден воздушного и морского флота.
Но все же наиболее широкое применение он и нашли именно в спецтехнике: погрузчики, экскаваторы, подъемные краны, автовышки, трактора и другие виды транспорта, в которых необходимо получить максимальное усилие при минимальном приложенной мощности.
Такому широкому распространению гидравлических систем поспособствовали следующие весомые преимущества:
-
Жидкость способна хорошо передавать энергию, а использование гибких соединительных шлангов вместо механических элементов повышает надежность системы.
-
Минимально приложенное усилие трансформируется в высокую мощность.
-
Высокая плавность работы. Даже тяжелые грузы можно перемещать с точной регулировкой, плавно и тихо, без вибраций.
-
Простота конструктивного решения. Гидравлическая система – это всего несколько подвижных деталей и минимальное число соединений, самостоятельная смазка.
-
Компактность. Размеры блоков гидрооборудования достаточно небольшие. Они не занимают много места и не требуют сложного монтажа.
-
Высокая экономичность работы оборудования. Ни одна другая система не способна дать подобные результаты.
-
Безопасность. Оборудование комплектуется предохранительным клапаном, защищающим весь узел от перегрузки.
Но наряду с высоким количеством преимуществ есть и аспекты, о которых следует знать заблаговременно, до покупки гидравлического оборудования. Речь идет прежде всего о необходимости прохождения регулярного технического обслуживания. Только оно способно защитить узел от повышенного износа, загрязнения рабочего тела, появления ржавчины. Обязательное условие – регулярная замена масла.
Источник: https://vc.ru/u/389473-igor-menshov/93334-dostatochno-li-vy-znaete-o-gidravlike-dlya-avtomobilya
Гидравлический ручной насос высокого давления с электроприводом: устройство и принцип работы, типы и виды
Инструменты и технические аппараты, работа которых связана с использованием энергии жидкостей, называют гидравлическими механизмами. В машиностроении их популярность основана на возможности передавать с потоком, через гибкие шланги и тонкие трубопроводы, огромные объемы энергии.
Что это, назначение и принцип работы устройства
Один из классов машин – гидравлический насос – является оборудованием по преобразованию механической энергии (вращения и крутящего момента приводного электрического двигателя; перемещения поршня при нажиме и поднятия рычага в ручной конструкции) в гидравлическую энергию жидкости (образование давления; подача или ход рабочего органа, например, штока гидроцилиндра).
Классификация и деление насосов на виды не влияет на общий принцип действия механизмов – вытеснение рабочей среды.
Работающий аппарат перемещает жидкость из полости всасывания (входной) в полость нагнетания (выходную) через изолированные камеры.
Выходящая из корпуса механизма жидкость имеет повышенное давление, обусловливающее ее перемещение по трубопроводу. Так как полости не соединены напрямую, устройства имеют идеальную адаптацию для работы в системах гидравлики с высоким давлением. Жидкость на выходе передает энергию поршню, перемещая его, или циркулирует в замкнутом контуре.
Гидравлические насосы высокого давления – обязательные элементы гидравлического привода, поэтому востребованы повсеместно. Основные области применения:
- Машиностроение, нефтепереработка, транспорт, сельское хозяйство, другие производственные и перерабатывающие отрасли.
- Оснащение мобильных моек, мастерских, предприятий коммунального хозяйства, строительных площадок.
- Системы чистки автомобилей, пожаротушения, подавления пыли, очистки труб, мытья улиц.
- Помпа – инженерная, погружная.
Технические характеристики и параметры выбора
Основными техническими характеристиками гидронасоса являются:
- Частота вращения, об/мин.
- Рабочий объем, вытесняемый за оборот вала, см3/об.
- Рабочее давление.
Запомните! Основные единицы для измерения давления имеют следующее соотношение: 1 атм=1,013 бар=0,101 МПа=1,03 кгс/см2.
Выбор насоса для конкретной гидросистемы производится с учетом следующих критериев:
- Вид элемента, вытесняющего жидкость – поршень, шестерня, пластина.
- Требуется ручной или гидронасос с электроприводом.
- Пределы рабочего давления.
- Со средой какой вязкости сможет работать механизм.
- Рабочий объем.
- Частотный интервал работы.
- Легкость обслуживания.
- Габариты.
- Цена.
Ручные
Конструкция ручных стандартных помп представляет цилиндрическую полость с поршнем, который жестко соединен со штоком. Шток, в свою очередь, через шарнир соединяется с приводным рычагом. В поршне находится промежуточный клапан, он связывает полости – поршневую и штоковую. Поршневую полость от резервуара с маслом отделяет впускной клапан, перед которым стоит фильтр. Штоковая полость отделена от выходного порта изделия выпускным клапаном.
Рычаг ручного (мускульного) аппарата высокого давления легко перемещается рукой или ногой (через педаль с возвращающей пружиной). При подъеме рычага поршень штоком поднимается, открывается впускной клапан и поршневая полость заполняется жидкостью.
В это время закрытый промежуточный затвор не допускает ее переток из штоковой полости в поршневую. Во время движения рычага вниз давление жидкости закрывает впускной и поднимает промежуточный клапан. Жидкость попадает в штоковую полость, открывает выпускной затвор и вливается в гидросистему.
С каждым циклом подъема-опускания рычага насос вытесняет в систему порцию воды или масла. Таков принцип работы механизма одностороннего действия.
В ручных механизмах двустороннего действия к верху и низу цилиндрической полости подведены параллельные линии всасывания жидкости из бака и ее нагнетания в трубопровод. При любом ходе поршня – вверх или вниз – один из пары впускных и выпускных клапанов открывается. В результате обеспечивается более производительная работа насоса с непрерывной и равномерной подачей рабочей жидкости.
Простое устройство гидроаппарата, требующего приложения мускульной силы, объясняет его широкое применение в производстве, индивидуальном хозяйстве, автосервисе, строительстве. Модели данного типа становятся составной частью различных механизмов:
- испытательных стендов;
- лабораторного оборудования;
- грузоподъемных кранов и платформ;
- статических гидроинструментов;
- водяных бытовых опрыскивателей;
- домкратов;
- прессового оборудования.
Главный минус – низкая производительность. К достоинствам можно отнести: надежность; простоту конструкции; низкую стоимость; работу без электропривода, следовательно, независимость от наличия источников электропитания; автономность; малый размер и вес; возможность быстро выполнить необходимый ремонт своими руками.
Изделия под отечественным брендом НРГ особенно популярны в частных гаражах, сфере автосервиса, ремонтных и индивидуальных мастерских.
Радиально-поршневые
Основное применение устройств данного типа – подъемное и прессовое оборудование, протяжные станки.
Типы поршневых гидравлических насосов с радиальным расположением цилиндров:
- Конструкции с ротором, смещенным относительно оси статора. Радиальные цилиндрические расточки ротора являются цилиндрами. В них располагаются поршни, при вращении ротора прижимаемые к стенкам обоймы неподвижного корпуса. Поршни вращающегося ротора приходят в возвратно-поступательное движение с ходом, равным удвоенному смещению (эксцентриситету). Внутри расположена неподвижная распределительная ось, выполняющая роль золотника. Проточки оси соединены с входной и напорной линией привода. Поворот ротора на 180° приводит поршень в поступательное движение к максимально выдвинутому положению. В это время камера цилиндра увеличивает объем и всасывает масло через проточку распределительной оси. Совершая следующие пол-оборота, поршень возвращается в тело ротора и вытесняет масло уже в напорную полость распределителя. Изменяя величину эксцентриситета, регулируют производительность механизма. Меняя эксцентриситет по знаку, то есть, перемещая ротор к противоположной стенке корпуса, добиваются изменения потока жидкости – реверса.
- С соосным расположением статора и ротора. Но группа поршней уже имеет радиальное расположение в статоре, а на роторе присутствует эксцентричный кулачок. В каждом поршне конструктивно заложены два клапана – всасывания и нагнетания. Вращение эксцентричного кулачка приводит к последовательной работе клапанов, обеспечивая переток рабочей жидкости. Конструкции этого типа чаще применяются в гидромоторах.
Преимущества конструкции:
- Надежность.
- В регулируемых вариантах конструкции легко настроить нужную производительность.
- Показаны к применению в реверсивных системах с изменяемым направлением потока жидкости.
- Пониженная шумность работы.
- Небольшой осевой габарит.
- Простота механизма.
Недостатки:
- Низкочастотность (до 2000 об/мин.) вращения ротора.
- Инерционность вращающегося ротора.
- Присутствие пульсации. Эффект значительно сглаживается при нечетном количестве поршней.
- Большой вес.
В производственной сфере распространены нерегулируемые эксцентриковые агрегаты общемашиностроительного применения – Н400-Н403.
Аксиально-поршневые
Самые распространенные механизмы гидроприводов. Вытеснителем жидкости из цилиндра выступает плунжер или поршень. Все цилиндры находятся в едином блоке и они параллельны с осями блока. Возвратно-поступательный ход поршней обеспечивается наклоном блока цилиндров к диску ведущего вала или конструктивным наклонным исполнением самого диска. Работа группы цилиндров сходна с радиально-поршневым устройством.
Запомните! Утечки цилиндров отводятся по дренажному сливу. Если его заглушить, можно спровоцировать повышение внутреннего давления с последующим повреждением корпуса и разгерметизацией гидронасоса.
Достоинства:
• Большая мощность и скорость вращения при компактности и небольшом весе агрегатов.
• Вариативность конструктивных исполнений.
• Небольшие рабочие органы имеют малый инерционный момент.
Недостатки:
• Цена механизмов высокая.
• Подача и расход жидкости сопровождаются существенной пульсацией.
• Конструктивная сложность. Следовательно, чувствительность к неправильной эксплуатации, продолжительный ремонт.
Отечественная модель НП-90 дешевле зарубежных насосов, востребована благодаря богатой комплектации и качеству сборки.
Шестеренные
Роторные гидромашины этого вида нашли применение в системах смазки, дорожной и сельскохозяйственной спецтехнике, мобильных гидравлических конструкциях. К их плюсам относят:
- простоту конструктивного исполнения;
- работу на частотах до 5000 об/мин.;
- небольшой вес;
- компактность.
Заметные минусы:
- рабочее давление до 20 МПа;
- низкий КПД;
- небольшой ресурс;
- проблемы пульсации.
Рабочими вытесняющими элементами конструкции являются две шестерни. Они различаются по виду зацепления:
- Внешнее. Со стороны входа шестерни вращаются в разные стороны, захватывают жидкость впадинами зубьев и перемещают ее вдоль стенок корпуса к выходу из насоса. Когда зубья входят в зацепление, рабочая жидкость выталкивается из впадин к выходу из корпуса.
- Внутреннее. Принцип работы не меняется. Жидкость переносится в область нагнетания во впадинах между зубьями шестерни вдоль поверхности вспомогательного серпообразного разделителя. Пульсация давления и уровень шума в таких агрегатах снижаются.
Разновидностью рассматриваемой системы зацепления являются героторные (без разделителя, шестерни постоянно контактируют благодаря особому профилю зубьев) и винтовые конструкции.
НШ-10 – известная и надежная модель шестеренного насоса с высококачественной сборкой.
Пластинчатые
В этих гидромашинах пластины, размещенные на роторе, выполняют основную работу. Специальные пружины усиливают их прижим к неподвижному корпусу. Соседние элементы становятся ограничителями объемной камеры, в ней рабочая среда при вращении ротора попадает из полости подачи к полости нагнетания. Присутствие двух и более областей всасывания и стольких же зон входа в систему свойственно конструкциям двукратного или многократного действия.
Нужно знать: регулируемыми могут быть только механизмы однократного действия.
Достоинства пластинчатых насосов:
- Пониженная пульсация.
- Снижение рабочего шума.
- Пониженные требования к засоренности перемещаемой среды.
- Регулируемый рабочий объем.
Минусы:
- Подшипники ротора сильно нагружены.
- Низкое давление.
- Сложность при уплотнении пластин на торцах.
- Низкая ремонтопригодность.
Г12 – популярная марка одно- и двухпоточных пластинчатых конструкций.
Полезно видео
Подробно об НШ-10:
Принцип действия разных вариантов:
Источник: https://WodaKachka.com/snabzhenie/gidravlicheskiy-nasos-tipy-i-printsip-raboty.html
Гидравлические машины: назначение и область применения
Гидравлическая машина — аппарат, перемещающий газы, жидкости, а также — осуществляет выработку энергии от текущей жидкости.
Главное назначение такого аппарата в образовании и запуска движения потока из жидкости.
Гидравлическое оборудование отечественного производства имеет, как правило, высокое качество. Тульский завод гидравлических машин славится прочностью, длительным сроком эксплуатации выпускаемого оборудования.
Области применения
Простые гидравлические машины применяют в таких механизмах как:
- домкрат;
- подъемник:
- пресс
- и другие.
Таким образом, оборудование широко распространено в строительстве, конструкции машин (ковши, буры, манипуляторы и другие средства).
Сфера применения различных насосов зависит от их вида. Так, например, центробежные насосы используют:
- в деятельности ТЭС (теплоэлектростанций);
- в разных системах очистки;
- для перемещения газов, продуктов из нефти и др.
Возвратно-поступательные насосы применяют:
- в водоснабжении;
- в подаче топлива;
- в перекачке опасных веществ, способных к возгоранию.
Шестеренные механизмы применяют:
- в перекачке разного топлива;
- в сельском хозяйстве;
- в перемещении химических веществ.
В настоящее время оборудование широко используется для создания тренажеров.
Как работают гидравлические машины: принципы, особенности
Существует несколько разновидностей гидравлических машин, что накладывает свои особенности на работу каждого отдельного вида машин. Рассмотрим некоторые из них:
- Центробежные насосы с лопастями обеспечивают движение жидкости от центра к периферии. Осевые предполагают движение жидкости вдоль движущейся оси.
- Поршневой насос – самая распространенная модель. Суть работы заключается в вытеснении жидкостей в рабочей камере с использованием подвижных элементов устройства.
- Насосы с шестернями, роторного типа. После того, как произошел запуск двигателя, из входного отверстия (всасывающее) вода проходит между зубьями и перемещается в нагнетательную полость и другим частям аппарата.
- Ковшовые гидротурбины работают с высоким давлением. Способны выдерживать большие напоры. Те струи воды, которые попадают на ковши колеса, приводят в движение рабочее колесо. Струи формируются специальными отверстиями.
Гидравлические машины широко распространены в сфере строительства, создания машинного оборудования. Отечественный производитель создает продукцию высокого качества.
admin
Источник: https://ostroykevse.com/news/gidravlicheskie-mashiny-naznachenie-i-oblast-primeneniya.html