Как работает холодильная машина

Цикл холодильной машины

как работает холодильная машина

Любой механизм с охлаждением: холодильник, кондиционер – работают циклично. Наиболее часто цикл холодильной машины – компрессионный.

Принцип работы охлаждающего оборудования (кондиционера) состоит в изменении параметров воздуха, придания ему определенных дополнительных опций: влажности, температуры, направления. При этом основная опция: охлаждение — обеспечивается постоянной циркуляцией, конденсацией и кипением хладагента в циклично-замкнутой системе. Хладагент кипит при низкой температуре и давлении, конденсация происходит, когда высокая и температура, и давление. 

Цикл холодильной машины схема 

Первая фаза – выход испарителя, находящегося в парообразном состоянии, характеризующимся низкой температурой и таким же давлением. Компрессор, повышает температуру и поднимает давление, переводя пар в жидкость. Различают компрессоры с водяным и воздушным охлаждением.

Следующая фаза – жидкий хладагент, имея высокую температуру и давление, передается в регулятор потока, где давление быстро понижается, а часть жидкости, превращаясь в пар, испаряется. В испарителе, следующем звене,  паро-водяная смесь кипит, переходя вновь в пар.

Пар, выходя из испарителя, возобновляет процесс охлаждения вновь.

Важно: Испаритель выбирается так, чтобы жидкая фаза полностью там испарилась.

Таким образом, цикличность заключается в постоянной круговой циркуляции хладагента с изменением физического состояния от жидкости к пару и наоборот. Все холодильные машины работают по разному, общее в работе одно – они работают по циклам. 

Цикл Карно холодильной машины 

Цикличность – основа цикла Карно. Теоретически, такой процесс – идеален с точки зрения термодинамики. Механическая работа выполняется за счет теплообмена резервуаров с разными температурными режимами, но постоянными во времени. Более высокотемпературный резервуар называется нагревателем, низкотемпературный – холодильником.

Идеальность таких процессов обеспечивается малой скоростью циркуляции, поэтому мощность в цикле Карно нулевая. Реальные машины не могут иметь нулевую мощность. Поэтому процессы, происходящие в настоящих механизмах только в какой-то степени могут приближаться к циклу Карно.

Для кондиционеров характерен обратный цикл Карно — холодильная машина проводит цикличный процесс в противоположную сторону. Тепло выходя из холодильника передается нагревателю, используя внешние силы. Можно говорить, что цикличность Карно — идеальный цикл холодильной машины или кондиционера. 

Процесс охлаждения в реальности и теории

Теоретический цикл работы холодильной машины значительно отличается от работы холодильных установок в обычной жизни. При работе реальных холодильников и кондиционеров происходят значительные потери давления на входе, выходе, увеличение сжатия, что автоматически снижает эффективность работы.

Сконструировать хладоустановку, имеющую обратимый цикл паровой холодильной машины (Карно) невозможно. В природе нет обратимых процессов.  Однако его можно считать эталоном экономически выгодного цикла, к которому надо стремиться.  

Источник: http://Aeroprof.ru/402-cikl-holodilnoj-mashiny.html

Принцип работы рефрижератора автомобиля

как работает холодильная машина

Изобретение рефрижератора упростило жизнь производителям и потребителям продуктов питания и других товаров, требующих определенного температурного режима хранения.
Теперь эту продукцию можно перемещать на большие расстояния без потери товарных качеств. Каково устройство транспортных авторефрижераторов?

Принцип работы автомобильных рефрижераторов

Установка функционирует аналогично бытовому холодильнику. В замкнутом контуре циркулирует фреон (газ, закипающий при низкой минусовой температуре) по очереди проходя несколько этапов:

  1. Посредством компрессора под давлением фреон сжимается до 18 атмосфер. Процесс идет с повышением температуры (до +130).
  2. В конденсаторе хладагент переходит в жидкое состояние, при этом отдает тепло наружу.
  3. Через осушительный фильтр (ресивер-осушитель), улавливающий частицы воды, жидкость попадает на ТРВ (терморегулирующий вентиль). За изменение температурного режима отвечает эта часть контура: ТРВ регулирует количество фреона, поступающего в испаритель.
  4. Объемный резервуар испарителя оснащен вентиляторами для прокачки воздуха через камеру. Здесь давление уменьшается, фреон закипает. При этом тепло из наружного воздуха поглощается. Вода конденсируется и сливается по дренажной системе наружу.
  5. Фреон возвращается в компрессор, цикл повторяется.

Необходимая температура задается настройками и далее автоматически регулируется термостатом. Диапазон – от минус до плюс 25.

Вот почему рефрижератор нужно выбирать грамотно

17 советов от эксперта

Для одновременной транспортировки двух или нескольких типов грузов с различными температурными требованиями существуют мультитемпературные модели: для продуктов предусмотрены отдельные секции, каждая со своей температурой.

Холодильное оборудование имеет функции ручной и автоматической оттайки. Управление – или электромеханическое, или с помощью встроенного микропроцессорного контроллера. Панель управления располагается в кабине водителя.

Условия работы «автохолодильников» отличны от бытовых: вибрация предъявляет повышенные требования к конструкции рабочих частей и материалам изготовления.

Устройство холодильных рефрижераторов

Рефрижератор состоит из холодильной установки и герметичного теплоизолирующего фургона. Варианты:

  • бортовой полуприцеп с вкладной сэндвич-панелью для пола;
  • на собственном шасси, адаптированном под крепление панели. У этого оборудования меньше масса и выше грузоподъемность.

Обратите внимание

В ряде случаев для снижения нагрузки на шасси используются полурамные конструкции. Их минус – меньшая надежность: на стыке рамы с седельной площадкой могут появляться трещины.

Стенки фургона изготавливают из сэндвич-панелей толщиной до 8 сантиметров. Между собой панели соединяются герметичными стыками во избежание появления тепловых мостиков.

На двери холодильного отделения рефа устанавливают эластичный уплотнительный контур из износостойкой резины.

Для обшивки фургона изнутри и снаружи используются следующие материалы:

  • оцинкованная сталь с полимерным защитным покрытием либо нержавейка;
  • ламинированная фанера;
  • фанера с оклейкой из армированного пластика;
  • плакированные стальные или алюминиевые листы.

Утеплитель – пенополиуретан (ППУ). Его характеристики:

  • плотность – 60 киллограммов на кубометр;
  • теплопроводность – 0,035 ватт на метр квадратный.

Низкий коэффициент теплоизоляции позволяет минимизировать толщину теплоизолирующего слоя. Другие достоинства материала – водостойкость, малый вес, неподверженность коррозии, гниению, биологическим факторам.

Кроме ППУ в этом качестве может использоваться экструдированный пенополистирол.

Пол фургона – сэндвич-панель из многослойной фанеры. Покрытие:

  • оцинкованная сталь;
  • рифленая сталь или рифленый алюминий;
  • полимерные материалы.

Сборка осуществляется бескаркасным способом. Малый вес, компактность и прочность составляющих позволяет освободить в кузове максимум места для груза без ущерба для прочности, герметичности и сохранения нужного теплового режима.

Внутри фургона устанавливают перегородки для сортировки груза, которые препятствуют его перемещению во время движения. Перегородки – облегченные сетчатые, обычно съемные.

Конструкции рефрижераторов

Схема устройства рефрижераторной установки для автомобиля зависит от типа подачи энергии на компрессор. Есть несколько способов энергообеспечения:

С приводом от двигателя

Двигатель соединяется с компрессором с помощью эластичного или клиновидного ремня передачи, на валу компрессора размещена муфта сцепления. Система вентиляторов функционирует от бортового электричества.

Это удобно для транспортировки малых партий груза на небольшие расстояния (например, по городу). Для дальней междугородней транспортировки не подойдет, т.к. на стоянках холодильное оборудование работать не будет. Такие рефрижераторы устанавливают на машины с небольшим объемом фургона (каблук и т.д.).

Подробнее о рефрижераторах с приводом от двигателя.

Автономные

Имеют свой собственный дизельный двигатель, продолжают работать на стоянках. Подходят для многотоннажного транспорта и для прицепов, для перевозки больших партий замороженного груза на большие расстояния.

Достоинства – независимость от двигателя машины, большая мощность. Недостатки: высокий расход горючего, крупные габариты, высокая цена. Подробнее смотрите здесь.

Электрические

Работают от электродвигателя постоянного тока 12 либо 24 В. Существуют модели на 230 В с преобразователем тока (инвертором). Зарядка осуществляется на стоянках.

Дизель-электрические

Источник: https://tkazimut.com/printsip-raboty-refrizheratora-avtomobilya/

СО2 как современный хладагент для промышленного холода

как работает холодильная машина

21.01.2016

 Выбирая, какой хладагент использовать при проектировании холодильных систем, нужно учитывать такие важные критерии его применения, как безопасность использования, величину эксплуатационных издержек и экологическую безвредность; немаловажную роль из-за стремительного роста цен на энергоресурсы также играет низкая энергоемкость.

Идеальный хладагент для холодильных систем также должен обладать химической стабильностью и высокими термодинамическими характеристиками. Производственным критериям полностью удовлетворяли хлор- и бромсодержащие фреоны, но их использование наносило непоправимый вред окружающей среде, поэтому было законодательно ограничено.

Сейчас в системах промышленного холода все чаще рекомендуется использовать альтернативные – «природные» – хладагенты: аммиак, воду, углеводороды (пропан и бутан), а также диоксид углерода.

С точки зрения эффективности применения, адекватной замены запрещенным фреонам, которые бы максимально удовлетворяли запросам холодильной промышленности, так и не было найдено.

Аммиак, который сейчас широко используется в крупных промышленных холодильных установках, токсичен и горюч; еще более пожароопасные углеводороды могут использоваться только в небольших холодильных машинах, а вода имеет очень ограниченную область применения.

Диоксид углерода (СО2), известный под обозначением R744, является природным веществом и обладает несомненными достоинствами для холодильной промышленности (высокой холодопроизводительностью, нетоксичностью, безопасностью использования, инертностью к материалам, дешевизной и доступностью), а в замкнутых контурах имеет пренебрежительно малый потенциал всемирного потепления.

Высокие давления в области рабочих температур с одной стороны налагают специальные требования к конструкции работающего на СО2 оборудования, которые нужно учитывать при проектировании холодоснабжения предприятий, с другой позволяя добиваться повышенной холодопроизводительности. Также эти особенности следует учитывать при транспортировке и хранении углекислоты.

Холодильная автоматика Данфосс и другое оборудование, которое работает на СО2

Инициатива вернуться к использованию СО2 в качестве хладагента принадлежит скандинавским странам: например, датская компания Данфосс уже давно выпускает холодильную автоматику для оборудования, работающего на диоксиде углерода. В основном это стандартные устройства, модифицированные в соответствии с особенностями применения СО2.

Швейцарская фирма Alfa Laval в своей линейке холодильного оборудования выпускает воздухоохладители (промышленной и коммерческой серий) и пластинчатые теплообменники, рабочее давление которых подходит для использования СО2. Поршневые и винтовые компрессоры открытого типа, специально разработанные для каскадных систем с использованием СО2, выпускает японская компания MYCOM.

В последние годы в мире наблюдается повышение интереса к работающим на углекислом газе холодильным машинам.

Так всемирно известный концерн Nestlé в своих производственных циклах широко пользуется каскадными холодильными установками, работающими на аммиаке и СО2, демонстрируя энергоэффективность их использования.

В некоторых странах наблюдается законодательное мотивирование потребителей и производителей: в Нидерландах заметно снизились налоги на работающие на углекислоте установки, а в Скандинавии, наоборот, повысились налоги на использование синтетических хладагентов.

Хоть наибольшая эффективность (вплоть до конкуренции с синтетическими хладагентами) применения СО2 и наблюдается в области субкритических температур (так в Азии широко распространено применение СО2 для рекуперации отведенного тепла и для использования в тепловых насосах), для сверхкритических температур холодильное оборудование может быть успешно оптимизировано. Например, компания Coca-Cola, сочетая использование СО2 и фреона R134a в своих холодильных установках, добилась значительного уменьшения потребления электроэнергии. Установки на СО2 уже используются для оборудования холодильных складов (в 2006 году первая в Украине двухконтурная каскадная система была запущена по проекту финской компании HUURRE), супермаркетов, предприятий пищевой промышленности и других объектов. Эти и подобные примеры показывают, что холодильное оборудование может работать эффективно и без ущерба для окружающей среды благодаря применению природных хладагентов.

Особенности применения углекислоты на нижней ступени в каскадных схемах

Итак, каскадные схемы с амиаком в качестве хладагента верхнего каскада уже более десяти лет применяются в странах Европы, при этом повышается промышленная безопасность из-за снижения количества аммиака в системах и на 10-15% снижается энергопотребление (по сравнению с двуступенчатыми схемами, в которых аммиак используется вместе с вторичным хладоносителем). При этом нижняя ветвь каскадной холодильной машины, которая работает на углекислом газе, может функционировать в режиме непосредственного кипения СО2 в испарителе, принудительной циркуляцией СО2 с насосной подачей хладагента, а также для охлаждения потребителей с использованием СО2 в качестве промежуточного хладоносителя.

Для охлаждения жидкого СО2 при его использовании на нижней ступени каскадных циклов, а также для поддержания давления в установке на приемлемом уровне применяются дополнительные холодильные системы. Также предусматриваются различные способы оттайки, в т.ч.

горячим паром, и в этом случае в системах используются линейные ресиверы, которые компенсируют колебания уровня заполнения испарителя жидким СО2 при изменении тепловой нагрузки, а также применяются для освобождения конденсатора от жидкости, омертвляющей теплообменную поверхность.

Также при проектировании и монтаже промышленного холодильного оборудования с использованием СО2 следует предусмотреть дополнительные меры предосторожности против попадания внутрь воды.

Проникая внутрь вместе с хладагентом при заправке холодильных установок, при замене вставок фильтров или через сальники из-за разности парциального давления, вода при взаимодействии с СО2 образует угольную кислоту, разъедающую трубы.

Поэтому каскадные системы должны комплектоваться фильтрами-осушителями.

Также рекомендуем статьи:

Классификация хладагентов (холодильных агентов)

Инжиниринг холодоснабжения: выбор системы для пищевого производства

Серии поршневых одноступенчатых компрессоров Майком (MAYEKAWA)

Источник: http://holod-ru.com/about/publikaczii/so2-kak-sovremennyij-xladagent-dlya-promyishlennogo-xoloda.html

Принцип работы фреоновой холодильной установки — Все об электричестве

Сегодня в охлаждении нуждается огромное количество продуктов, а еще без холода невозможно реализовать многие технологические процессы. То есть с необходимостью применения холодильных установок мы сталкиваемся в быту, в торговле, на производстве. Далеко не всегда удается использовать естественное охлаждение, ведь оно сможет понизить температуру лишь до параметров окружающего воздуха.

На выручку приходят холодильные установки. Их действие основано на реализации несложных физических процессов испарения и конденсации. К преимуществам машинного охлаждения относится поддержание в автоматическом порядке постоянных низких температур, оптимальных для определенного вида продукта. Также немаловажными являются незначительные удельные эксплуатационные, ремонтные затраты и расходы на своевременное техническое обслуживание.

Как работает холодильная машина

Для получения холода используется свойство холодильного агента корректировать собственную температуру кипения при изменении давления. Чтобы превратить жидкость в пар, к ней подводится определенное количество теплоты. Аналогично конденсация парообразной среды наблюдается при отборе тепла. На этих простых правилах и основывается принцип работы холодильной установки.

Это оборудование включает в себя четыре узла:

  • компрессор
  • конденсатор
  • терморегулирующий вентиль
  • испаритель

Между собой все эти узлы соединяются в замкнутый технологический цикл при помощи трубопроводной обвязки. По этому контуру подается холодильный агент. Это вещество, наделенное способностью кипеть при низких отрицательных температурах.

Этот параметр зависит от давления парообразного хладагента в трубках испарителя. Более низкое давление соответствует низкой температуре кипения.

Процесс парообразования будет сопровождаться отнятием тепла от той окружающей среды, в которую помещено теплообменное оборудование, что сопровождается ее охлаждением.

При кипении образуются пары хладагента. Они поступают на линию всасывания компрессора, сжимаются им и поступают в теплообменник-конденсатор. Степень сжатия зависит от температуры конденсации. В данном технологическом процессе наблюдается повышение температуры и давления рабочего продукта.

Компрессором создают такие выходные параметры, при которых становится возможным переход пара в жидкую среду. Существуют специальные таблицы и диаграммы для определения давления, соответствующего определенной температуре. Это относится к процессу кипения и конденсации паров рабочей среды.

Конденсатор – это теплообменник, в котором горячие пары хладагента охлаждаются до температуры конденсации и переходят из пара в жидкость. Это происходит путем отбора от теплообменника тепла окружающим воздухом. Процесс реализуется при помощи естественной или же искусственной вентиляции. Второй вариант зачастую применяется в промышленных холодильных машинах.

ЭТО ИНТЕРЕСНО:  Как проверить трехходовой клапан

После конденсатора жидкая рабочая среда поступает в терморегулирующий вентиль (дроссель). При его срабатывании давление и температура понижается рабочих параметров испарителя. Технологический процесс вновь идет по кругу. Чтобы получить холод необходимо подобрать температуру кипения хладагента, ниже параметров охлаждаемой среды.

На рисунке представлена схема простейшей установки, рассмотрев которую можно наглядно представить принцип работы холодильной машины. Из обозначений:

  • «И» — испаритель
  • «К» -компрессор
  • «КС» — конденсатор
  • «Д» — дроссельный вентиль

Стрелочками указано направление технологического процесса.

Помимо перечисленных основных узлов, холодильная машина оснащается приборами автоматики, фильтрами, осушителями и иными устройствами. Благодаря им установка максимально автоматизируется, обеспечивая эффективную работу с минимальным контролем со стороны человека.

В качестве холодильного агента сегодня в основном используются различные фреоны. Часть из них постепенно выводится из употребления ввиду негативного воздействия на окружающую среду. Доказано, что некоторые фреоны разрушают озоновый слой. Им на смену пришли новые, безопасные продукты, такие как R134а, R417а и пропан. Аммиак применяется лишь в масштабных промышленных установках.

Теоретический и реальный цикл холодильной установки

На этом рисунке представлен теоретический цикл простейшей холодильной установки. Видно, что в испарителе происходит не только непосредственно испарение, но и перегрев пара. А в конденсаторе пар превращается в жидкость и несколько переохлаждается. Это необходимо в целях повышения энергоэффективности технологического процесса.

Левая часть кривой – это жидкость в состоянии насыщения, а правая – насыщенный пар. То, что между ними – паро-жидкостная смесь. На линии D-A` происходит изменение теплосодержания холодильного агента, сопровождающееся выделением тепла. А вот отрезок В-С` наоборот, указывает на выделение холода в процессе кипения рабочей среды в трубках испарителя.

Реальный рабочий цикл отличается от теоретического ввиду наличия потерь давления на трубопроводной обвязке компрессора, а также на его клапанах.

Чтобы компенсировать данные потери работа сжатия должна быть увеличена, что снизит эффективности цикла. Данный параметр определяется отношением холодильной мощности, выделяемой в испарителе к мощности, потребляемой компрессором и электрической сети.

Эффективность работы установки – это сравнительный параметр. Он не указывает непосредственно на производительность холодильника. Если данный параметр 3,3, это будет указывать, что на единицу электроэнергии, потребляемой установкой, приходится 3,3 единицы произведенного ею холода.

Чем больше этот показатель, тем выше эффективность установки.

Устройство и принцип работы холодильной установки

Источник: https://contur-sb.com/printsip-raboty-freonovoy-holodilnoy-ustanovki/

Принцип работы фреоновой холодильной установки

› Разное

статьи (пока оценок нет)

Сегодня в охлаждении нуждается огромное количество продуктов, а еще без холода невозможно реализовать многие технологические процессы. То есть с необходимостью применения холодильных установок мы сталкиваемся в быту, в торговле, на производстве. Далеко не всегда удается использовать естественное охлаждение, ведь оно сможет понизить температуру лишь до параметров окружающего воздуха.

На выручку приходят холодильные установки. Их действие основано на реализации несложных физических процессов испарения и конденсации. К преимуществам машинного охлаждения относится поддержание в автоматическом порядке постоянных низких температур, оптимальных для определенного вида продукта. Также немаловажными являются незначительные удельные эксплуатационные, ремонтные затраты и расходы на своевременное техническое обслуживание.

Принцип работы фреоновых систем охлаждения

Дання статья является переводом, ананлогичной статьи с сайта phase-change.com
Данная статья написана Bowman, и опубликованна с его разрешения. Вот линк на оригинал: Beginner’s class 101 by BOWMAN

Хладогены – 134a, r12, r22, r502, r290 и другие. В принципе, любой газ, который переходит в жидкое состояние под давлением и при кипении, испаряясь, забирает тепло, может подойти для наших целей. Единственное различие между всеми хладогенами это температура кипения.

Компрессор – в самом названии кроется его предназначение. Сжимает хладоген, превращая его в газ высокого давления. Это позволяет хладогену легко конденсироваться в жидкость.

Конденсер (радиатор) – охлаждается воздухом или жидкостью. Он охлаждает хладоген, который под давлением поступает в радиатор, конденсируясь в жидкость.

Испаритель – ну конечно же испаряет. Это место где хладоген в жидком состоянии, испаряясь переходит в газ. Этот процесс сопровождается поглощением тепла. На рисунке показан обычный испаритель, используемый в системах охлаждения (кондиционеры).

Осушитель/Фильтр – используется для удержания влаги и предотвращает ее взаимодействие с хладогеном. При взаимодействии хладогена и влаги возможно появление вредных кислот. Также осушитель содержит фильтр, который удерживает мелкие частички (пылинки) от попадания в капиллярную трубку или расширительный клапан. Это нужно для предотвращения засорения капиллярной трубки. На картинке изображен осушитель с фильтром (справа) и без него (слева)

Расширительный клапан (капиллярная трубка) – место, где хладоген находящийся под
давлением перетекает в область пониженного давления. В последствии хладоген начинает кипеть и испаряться. Расширительный клапан это механическое устройство, которое открывается и закрывается, регулируя поступление хладогена. Также можно использовать капиллярную трубку (0.026″ диаметром). Изменяя диаметр капилляра или его длину можно регулировать поступление фреона.

Хладоген двигается по кругу через всю систему. Хладоген начинает свой путь в компрессоре, где он сжимается и превращается в газ высокого давления. Газ движется далее к кондесеру, где благодаря высокому давлению и соответствующему охлаждению переходит в жидкость. Там же хладоген собирается в нижней части конденсера в виде стекающей жидкости. Далее жидкость движется к фильтру/осушителю. Жидкость проталкивается через фильтр, а меленькие частицы остаются внутри.

Это предохраняет капиллярную трубку или расширительный клапан от закупоривания или поломки. Также осушитель защищает систему от попадания влаги в испаритель. Влага может прореагировать с газообразным хладогеном, образуя соединения, которые могут повредить систему. Попадание влаги в компрессор может вывести его из строя. Итак, хладоген в жидком состоянии находится в капиллярной трубке или расширительном клапане. Прежде чем двигаться дальше следует рассмотреть этот участок подробнее.

Проталкивание хладогена через капиллярную трубку или расширительный клапан дает нам три вещи: 1-я – это то, что данный участок разделяет систему на область высокого и низкого давления. Разделение потока хладогена позволяет компрессору поддерживать давление по одну сторону от капиллярной трубки или расширительного клапана. Это также дает нам область низкого давления, которая нужна для нормального кипения хладогена. Чем ниже давление в этой области, тем ниже точка кипения хладогена.

Это дает нам низкую температуру испарителя. 2-я – это то, что мы можем контролировать поступление хладогена в испаритель. Поддержание соответствующего объема поступающего хладогена очень важно. Слишком много хладогена в испарителе может заполнить его. Это вызовет повышение давления в испарителе (большее количество кипящего хладогена, которое может вместить испаритель, приводит к повышению давления).

При повышении давления повышается точка кипения хладогена, тем самым увеличивается температура испарителя. К тому же происходит неэффективное использование хладогена. В другом случае, недостаточное количество хладогена приведет к неполному съему тепла в испарителе. В этом случае выделяющегося тепла будет больше чем поглощающегося и эффекта от охлаждения не будет.

3-я – это то, что если жидкого хладогена будет слишком много в испарителе, испаритель переполнится избыточной жидкостью и она попадет в компрессор. Это ОЧЕНЬ, ОЧЕНЬ плохо. Компрессор спроектирован для сжатия газа, а не жидкости! Этим мы просто испортим компрессор.

Существуют два способа регулировки количества хладогена поступающего в испаритель. Капиллярная трубка – первый из них. Она представляет собой очень тонкую трубку. Внутренний диаметр приблизительно 0.026″. Путем удлинения или укорачивания капилляра, а также подбором внутреннего диаметра можно регулировать поступление хладогена в испаритель.

Источник: https://electrik-ufa.ru/raznoe/printsip-raboty-freonovoj-holodilnoj-ustanovki

Основные компоненты холодильного контура. Цикл парокомпрессионной холодильной машины

Отвод тепла с помощью теплоты плавления льда

В основе действия холодильных машин лежит второй закон (или второе начало) термодинамики, который применительно к холодильным машинам гласит: для передачи теплоты от менее нагретого тела (холодного) к более нагретому (горячему) необходимо затратить энергию.Иными словами, чтобы охладить какое-либо тело, необходимо отвести от него теплоту, используя для этого какое либо техническое устройство.

В системах охлаждения используется явление увеличения теплосодержания вещества во время плавления и кипения при постоянной температуре. Самый простой способ отвода тепла от определенной области осуществляется при помощи ледяного блока. При плавлении лед поглощает тепло из окружающей атмосферы и продуктов, а продукт плавления льда отводится за пределы ледника—в окружающую среду.

Поскольку теплота парообразования во много раз больше теплоты плавления, во время процесса кипения поглощается большее количество теплоты при постоянной температуре. Поэтому рекомендуется производить перенос теплоты при температуре кипения вещества. В этом состоит преимущество компрессионных систем охлаждения. В дальнейшем в данном курсе будут рассмотрены особенности монтажа парокомпрессионных систем охлаждения.

Рассмотрим цикл работы холодильной установки на примере бытового холодильника.

Цикл холодильной установки (бытовой холодильник)

Холодильник оснащен теплообменником (испарителем), куда поступает хладагент в парожидкостной фазе (смесь пара с жидкостью). В испарителе за счет кипения рабочего вещества теплота отводится от охлаждаемой среды — воздуха в системе непосредственного охлаждения (как в рассматриваемом примере), воды или рассола в системе с промежуточным хладоносителем.

При температуре +5°C внутри холодильника температура кипения хладагента в испарителе составит около -15°C, которая в случае использования хладагента R134a соответствует абсолютному давлению 1,7 бар. Тепло из внутренней части холодильника отводится более холодным испарителем, где кипит хладагент. Температура внутри холодильника снижается.

Компрессор откачивает пары хладагента из испарителя, сжимает их и направляет в другой теплообменник – конденсатор, расположенный на внешней части холодильной камеры.

В конденсаторе теплота отводится от конденсирующегося рабочего вещества с помощью охлаждающей среды — воздуха или воды— которая при этом нагревается. Хладагент меняет агрегатное состояние на жидкое.

Обычно температура окружающего конденсатор воздуха (комнатная) составляет от 20 до 25°C. Для обеспечения правильного отвода теплоты от конденсатора в окружающую среду температура конденсации должна превышать температуру окружающей среды в данном случае на 20-30 К. Для хладагента R134a и предполагаемой температуры конденсации 50°C абсолютное давление в конденсаторе составляет 13,2 бар.

Таким образом, задача компрессора состоит не только в удалении паров хладагента из испарителя, но и в их сжатии.

Жидкое рабочее вещество из конденсатора проходит через регулирующий (дроссельный) вентиль, где происходит процесс дросселирования (расширения рабочего тела без совершения внешней работы). Этот вентиль (в данном случае капиллярная трубка) расположен между конденсатором и испарителем, в котором хладагент расширяется и его давление снижается до давления кипения. Здесь замыкается цикл охлаждения.

Ниже приведена схема холодильного цикла в условных обозначениях

Принципиальная схема парокомпрессионной холодильной машины: КМ — компрессор; КД — конденсатор;РВ — регулирующий вентиль; И — испаритель; /, 2,3,4 — точки цикла

Процессы, обозначенные на схеме:

4—1—кипение рабочего вещества (хладагента) в испарителе, при этом теплота Q0 отводится от охлаждаемой среды 1—2—сжатие паров рабочего вещества в компрессоре; 2—3—конденсация паров рабочего вещества в конденсаторе, при этом теплота Q передается окружающей или нагреваемой среде;

3—4—дросселирование рабочего вещества в регулирующем вентиле.

Таким образом, парокомпрессионная холодильная машина должна иметь четыре обязательных элемента: компрессор, конденсатор, испаритель и регулирующий вентиль.

Температура кипения рабочего вещества в испарителе зависит от давления кипения р0, а оно, в свою очередь,— от производительности компрессора. Температуру кипения поддерживают такой, чтобы обеспечить необходимую (заданную) температуру охлаждаемой среды. Для понижения температуры кипения необходимо понизить давление кипения, что можно сделать, увеличив производительность компрессора.

Температура конденсации рабочего вещества и соответствующее ей давление конденсации зависят главным образом от температуры среды, используемой для охлаждения конденсатора. Чем она ниже, тем ниже будут температура и давление конденсации. Величины давлений кипения и конденсации в значительной мере влияют на производительность компрессора. Они же в основном определяют и количество энергии, которое необходимо для его работы.

Представление цикла холодильной машины в термодинамических диаграммах

Теоретические циклы холодильных машин изображают на термодинамических диаграммах, которые позволяют лучше понять принцип их действия. Термодинамические диаграммы, кроме того, служат теоретической базой для расчета холодильных машин в целом и их отдельных элементов.

Наиболее распространены диаграммы энтальпия — давление (i, lgp -диаграмма) и энтропия — температура (s, T-диаграмма). Первую применяют для тепловых расчетов, вторую — для анализа термодинамической эффективности циклов. При этом используют следующие параметры:

  • температуру в °С или абсолютную температуру Т в К;
  • давление в Па или производных единицах (1кПа=103Па, 1 МПа= 106 Па= 10,2 кгс/см2 = 10 бар);
  • удельный объем ν в м3/кг;
  • плотность в кг/м3, (величина, обратная удельному объему). Кроме простых измеряемых параметров, используют также сложные расчетные параметры:
  • энтальпию I в кДж;
  • энтропию S в кДж/К. На диаграммах и в расчетах применяют обычно удельную энтальпию i в кДж/кг, т. е. отнесенную к единице массы хладагента. Логарифмическая ось давления принимается в целях уменьшения масштаба диаграммы.

 На i, lgр и s, T-диаграммах из точки К, соответствующей критическому состоянию хладагента, расходятся две так называемые пограничные кривые, разделяющие поле на три зоны: переохлажденной жидкости (ПЖ), парожидкостной смеси (Ж+П) и перегретого пара (ПП).

Если на i, lgp-диаграмме провести линию постоянного давления (p = const) — изобару, а на s, Т-диаграмме—линию постоянной температуры (T=const) — изотерму, то они пересекут пограничные кривые в точках А и В. В точке А хладагент находится в состоянии насыщенной жидкости, а в точке В — насыщенного пара.

Фазовый переход от жидкости к пару на диаграммах идет слева направо. При подводе теплоты (энтальпия и энтропия возрастают) переохлажденная жидкость, достигнув состояния насыщения в точке А, начинает кипеть.

По мере дальнейшего подвода теплоты содержание жидкости в единице массы хладагента уменьшается, а содержание пара – увеличивается, достигая в точке В 100 %. Образуется насыщенный пар. Паросодер-жание х хладагента на левой пограничной кривой равно 0, а на правой—1.

Состояние при х=1 называют также сухим насыщенным паром, чтобы подчеркнуть, что пар не содержит частиц жидкости в отличие от влажного пара, представляющего собой смесь пара и жидкости (П + Ж).

ЭТО ИНТЕРЕСНО:  Почему не отключается холодильник

Фазовый переход от пара к жидкости на диаграммах идет справа налево. При отводе теплоты происходит процесс конденсации хладагента. Он начинается в точке В и заканчивается в точке A.

На i, lgр-диаграмме разность значений энтальпий i в точках А и В будет равна величине r в кДж/кг, которую, в зависимости от направления процесса (от А к В или от В к А), называют удельной (скрытой) теплотой парообразования или удельной теплотой конденсации.

На s, Т-диаграмме величине r будет соответствовать площадь (заштрихованная) под процессом А — В.

Параметры, соответствующие состоянию хладагента на левой пограничной кривой (х = 0), обозначают с одним штрихом, а на правой (х = 1) — с двумя.

В процессах кипения и конденсации давление и температура насыщения остаются неизменными, так как подводимая или отводимая теплота расходуется на изменение агрегатного состояния хладагента. При этом температура насыщения зависит от давления. При его увеличении она повышается, а при уменьшении — понижается.

Если после подвода определенного количества теплоты и достижения хладагентом состояния насыщенного пара в точке В продолжать подводить теплоту при постоянном давлении (p = const), то этот процесс В — С будет сопровождаться повышением температуры: ТС>ТВ. Насыщенный пар перейдет в точке С в состояние, называемое перегретым паром.

Аналогично, если после окончания процесса конденсации В — А продолжать отводить теплоту, то дальнейший процесс А — D будет сопровождаться понижением температуры. Насыщенная жидкость перейдет в точке D в состояние, называемое переохлажденной жидкостью.

На i, lgp-диаграмме изотермы (T = const) в зоне ПЖ идут почти вертикально вверх, параллельно изоэнтальпам—линиям постоянной удельной энтальпии (i=const), а в зоне ПП—резко вниз.

На s, T-диаграмме изотермы горизонтальны. Изобары (р=const) в зоне ПЖ идут резко вниз и почти совпадают с пограничной кривой (x = 0), в зоне ПП — поднимаются круто вверх. Изоэнтальпы (i =const) спускаются круто вниз.

Линии постоянной удельной энтропии (s = const) Ha s, T-диаграмме вертикальны, а на i, lgр-диаграмме располагаются примерно под углом 45° к горизонтали.

С небольшим подъемом от горизонтали идут на обеих диаграммах линии постоянного удельного объема (ν = const). Большим давлениям р соответствует меньший удельный объем ν.

Поскольку при работе парокомпрессионной холодильной машины в установившемся (стационарном) режиме давления кипения р0 и конденсации рк хладагента постоянны, количество подводимой или отводимой теплоты изображается на i, lgр-диаграмме в виде отрезка прямой линии и равно разности энтальпий в начале и конце процесса. В этом заключается достоинство i, lgp-диаграммы, которое обусловило ее широкое использование для расчета парокомпрессионных холодильных машин.

Контрольные вопросы:

  1. Каковы основные элементы холодильного контура?
  2. В чем заключается принцип работы холодильной машины
  3. Как представляется процесс работы холодильной машины в диаграммах?

Литература:

  1. Изучающим основы холодильной техники. Под общей редакцией А. Д. Акимовой. М., 1996. – 144 с.

Источник: https://www.prof2.ru/news/view/osnovnye-komponenty-holodil-nogo-kontura-cikl-parokompressionnoj-holodil-noj-mashiny

Принципы работы холодильной машины

Охлаждение в кондиционерах производится за счет поглощения тепла при кипении жидкости.

Когда мы говорим о кипящей жидкости, мы, естественно, думаем, что она горячая. Однако это не совсем верно.

Во-первых, температура кипения жидкости зависит от давления окружающей среды. Чем выше давление, тем выше температура кипения и, наоборот, чем ниже давление, тем ниже температура кипения. При нормальном атмосферном давлении 760 мм рт.ст. (1 атм) вода кипит при 100 °С, но если давление пониженное, как например в горах на высоте 7000-8000 м, вода начнет кипеть уже при температуре 40-60 °С.

Во-вторых, при одинаковых условиях разные жидкости имеют различные температуры кипения. Например, фреон R-22, широко используемый в холодильной технике, при нормальном атмосферном давлении имеет температуру кипения минус 40,8 °С.

Если жидкий фреон находится в открытом сосуде, т.е.

при атмосферном давлении и температуре окружающей среды, то он немедленно вскипает, поглощая при этом большое количество тепла из окружающей среды или любого материала, с которым находится в контакте.

В холодильной машине фреон кипит не в открытом сосуде, а в специальном теплообменнике, называемом испарителем. При этом кипящий в трубках испарителя фреон активно поглощает тепло от воздушного потока, омывающего наружную, как правило, оребренную поверхность трубок.

Теперь рассмотрим процесс конденсации паров жидкости на примере того же фреона R-22. Температура конденсации паров фреона, так же, как и температура кипения, зависит от давления окружающей среды. Чем выше давление, тем выше температура конденсации.

Так, например, конденсация паров фреона R-22 при давлении 23 атм начинается уже при температуре 55 °С.

Процесс конденсации фреоновых паров, как и любой другой жидкости, сопровождается выделением большого количества тепла в окружающую среду или применительно к холодильной машине передачей этого тепла потоку воздуха или жидкости в специальном теплообменнике, называемом конденсатором.

Естественно, чтобы процесс кипения фреона в испарителе и соответствующего охлаждения воздуха, а также процесс конденсации и соответствующий отвод тепла в конденсаторе был непрерывным, необходимо постоянно «подливать» в испаритель жидкий фреон, а в конденсатор постоянно подавать пары фреона. Такой непрерывный процесс (цикл) осуществляется в холодильной машине.

Наиболее обширный класс холодильных машин базируется на компрессионном цикле охлаждения, основными конструктивными элементами которого являются — компрессор, испаритель, конденсатор и регулятор потока (капиллярная трубка), соединенные трубопроводами и представляющие собой замкнутую систему, в которой циркуляцию хладагента (фреона) осуществляет компрессор. Кроме обеспечения циркуляции, компрессор поддерживает в конденсаторе (на линии нагнетания) и высокое давление, порядка 20-23 атм.

Теперь, когда рассмотрены основные понятия, связанные с работой холодильной машины, перейдем к более подробному рассмотрению схемы компрессионного цикла охлаждения, конструктивному исполнению и функциональному назначению отдельных узлов и элементов.

Схема компрессионного цикла охлаждения

В начале этого раздела следует сразу отметить, что кондиционер — это та же холодильная машина, но предназначенная для тепловлажностной обработки воздушного потока. Кроме того, кондиционер обладает существенно большими возможностями, более сложной конструкцией, многочисленными дополнительными опциями и т.п.

Обработка воздуха предполагает придание ему определенных кондиций, таких как температура и влажность, а также направление движения и подвижность (скорость движения).

Итак, теперь остановимся на принципе работы и физических процессах, происходящих в холодильной машине.

Охлаждение в кондиционере или далее по тексту холодильной машине обеспечивается непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре, а конденсация — при высоком давлении и температуре. Принципиальная схема компрессионного цикла охлаждения показана на рис. 3. 1.

Рис. 3.1. Схема компрессионного цикла охлаждения

Начнем рассмотрение работы цикла с выхода испарителя (участок 1-1). Здесь хладагент находится в парообразном состоянии, с низким давлением и температурой.

Парообразный хладагент всасывается компрессором, который повышает его давление до 15-25 атм и температуру до 70-90 °С (участок 2-2).

Далее в конденсаторе горячий парообразный хладагент охлаждается и конденсируется, т.е. переходит в жидкую фазу. Конденсатор может быть либо с воздушным, либо с водяным охлаждением, в зависимости от типа холодильной системы.

На выходе из конденсатора (точка 3) хладагент находится в жидком состоянии при высоком давлении. Размеры конденсатора выбираются таким образом, чтобы газ полностью сконденсировался внутри конденсатора.

Поэтому температура жидкости на выходе из конденсатора оказывается несколько ниже температуры конденсации. Переохлаждение в конденсаторах с воздушным охлаждением обычно составляет примерно 4-7 °С.

При этом температура конденсации примерно на 10-20 °С выше температуры атмосферного воздуха.

Затем хладагент в жидкой фазе при высокой температуре и давлении поступает в регулятор потока, где давление смеси резко уменьшается, часть жидкости при этом может испариться, переходя в парообразную фазу. Таким образом, в испаритель попадает смесь пара и жидкости (точка 4). Жидкость кипит в испарителе, отбирая тепло от окружающего воздуха, и вновь переходит в парообразное состояние.

Размеры испарителя выбираются таким образом, чтобы жидкость полностью испарилась внутри испарителя. Поэтому температура пара на выходе из испарителя оказывается выше температуры кипения, происходит так называемый перегрев хладагента в испарителе.

В этом случае даже самые маленькие капельки хладагента испаряются и в компрессор не попадает жидкость. Следует отметить, что в случае попадания жидкого хладагента в компрессор, так называемого «гидравлического удара», возможны повреждения и поломки клапанов и других деталей компрессора.

Для конденсаторов с воздушным охлаждением величина перегрева составляет 5-8 °С. Перегретый пар выходит из испарителя (точка 1, и цикл возобновляется.

Таким образом, хладагент постоянно циркулирует по замкнутому контуру, меняя свое агрегатное состояние с жидкого на парообразное и наоборот.

Все компрессионные циклы холодильных машин включают два определенных уровня давления. Граница между ними проходит через нагнетательный клапан на выходе компрессора с одной стороны и выход из регулятора потока (из капиллярной трубки) с другой стороны.

Нагнетательный клапан компрессора и выходное отверстие регулятора потока являются разделительными точками между сторонами высокого и низкого давлений в холодильной машине. На стороне высокого давления находятся все элементы, работающие при давлении конденсации.На стороне низкого давления находятся все элементы, работающие при давлении испарения.

Несмотря на то, что существует много типов компрессионных холодильных машин, принципиальная схема цикла в них практически одинакова.

Теоретический и реальный цикл охлаждения

Цикл охлаждения можно представить графически в виде диаграммы зависимости абсолютного давления и теплосодержания (энтальпии). На диаграмме (рис.3.2) представлена характерная кривая насыщения хладагента.

Левая часть кривой соответствует состоянию насыщенной жидкости, правая часть — состоянию насыщенного пара. Две кривые соединяются в центре в так называемой «критической точке», где хладагент может находиться как в жидком, так и в парообразном состоянии. Зоны слева и справа от кривой соответствуют переохлажденной жидкости и перегретому пару. Внутри кривой линии помещается зона, соответствующая состоянию смеси жидкости и пара.

Рассмотрим схему теоретического (идеального) цикла охлаждения с тем, чтобы лучше понять действующие факторы (рис.3.3).

Рассмотрим наиболее характерные процессы, происходящие в компрессионном цикле охлаждения.

Рис. 3.2. Диаграмма давления и теплосодержания

Рис. 3.3. Изображение теоретического цикла сжатия на диаграмме «Давление и теплосодержание»

Сжатие пара в компрессоре

Х

Источник: http://techno-nv.ru/statya/article_post/printsipy-raboty-kholodilnoy-mashiny

Тепловые машины

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: принципы действия тепловых машин, КПД тепловой машины, тепловые двигатели и охрана окружающей среды

Коротко говоря, тепловые машины преобразуют теплоту в работу или, наоборот, работу в теплоту.
Тепловые машины бывают двух видов — в зависимости от направления протекающих в них процессов.

1. Тепловые двигатели преобразуют теплоту, поступающую от внешнего источника, в механическую работу.

2. Холодильные машины передают тепло от менее нагретого тела к более нагретому за счёт механической работы внешнего источника.

Рассмотрим эти виды тепловых машин более подробно.

Тепловые двигатели

Мы знаем, что совершение над телом работы есть один из способов изменения его внутренней энергии: совершённая работа как бы растворяется в теле, переходя в энергию беспорядочного движения и взаимодействия его частиц.

Рис. 1. Тепловой двигатель

Тепловой двигатель — это устройство, которое, наоборот, извлекает полезную работу из «хаотической» внутренней энергии тела. Изобретение теплового двигателя радикально изменило облик человеческой цивилизации.

Принципиальную схему теплового двигателя можно изобразить следующим образом (рис. 1). Давайте разбираться, что означают элементы данной схемы.

Рабочее тело двигателя — это газ. Он расширяется, двигает поршень и совершает тем самым полезную механическую работу.

Но чтобы заставить газ расширяться, преодолевая внешние силы, нужно нагреть его до температуры, которая существенно выше температуры окружающей среды. Для этого газ приводится в контакт с нагревателем — сгорающим топливом.

В процессе сгорания топлива выделяется значительная энергия, часть которой идёт на нагревание газа. Газ получает от нагревателя количество теплоты . Именно за счёт этого тепла двигатель совершает полезную работу .

Это всё понятно. Что такое холодильник и зачем он нужен?

При однократном расширении газа мы можем использовать поступающее тепло максимально эффективно и целиком превратить его в работу. Для этого надо расширять газ изотермически: первый закон термодинамики, как мы знаем, даёт нам в этом случае .

Но однократное расширение никому не нужно. Двигатель должен работать циклически, обеспечивая периодическую повторяемость движений поршня. Следовательно, по окончании расширения газ нужно сжимать, возвращая его в исходное состояние.

В процессе расширения газ совершает некоторую положительную работу . В процессе сжатия над газом совершается положительная работа (а сам газ совершает отрицательную работу ). В итоге полезная работа газа за цикл: .

Разумеется, должно быть , или (иначе никакого смысла в двигателе нет).

Сжимая газ, мы должны совершить меньшую работу, чем совершил газ при расширении.

Как этого достичь? Ответ: сжимать газ под меньшими давлениями, чем были в ходе расширения. Иными словами, на -диаграмме процесс сжатия должен идти ниже процесса расширения, т. е. цикл должен проходиться по часовой стрелке (рис. 2).

Рис. 2. Цикл теплового двигателя

Например, в цикле на рисунке работа газа при расширении равна площади криволинейной трапеции . Аналогично, работа газа при сжатии равна площади криволинейной трапеции со знаком минус. В результате работа газа за цикл оказывается положительной и равной площади цикла .

Хорошо, но как заставить газ возвращаться в исходное состояние по более низкой кривой, т. е. через состояния с меньшими давлениями? Вспомним, что при данном объёме давление газа тем меньше, чем ниже температура. Стало быть, при сжатии газ должен проходить состояния с меньшими температурами.

Вот именно для этого и нужен холодильник: чтобы охлаждать газ в процессе сжатия.

Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или охлаждающая проточная вода (для паровых турбин). При охлаждении газ отдаёт холодильнику некоторое количество теплоты .

ЭТО ИНТЕРЕСНО:  Как рассчитать мощность компрессора

Суммарное количество теплоты, полученное газом за цикл, оказывается равным . Согласно первому закону термодинамики:

где — изменение внутренней энергии газа за цикл. Оно равно нулю: , так как газ вернулся в исходное состояние (а внутренняя энергия, как мы помним, является функцией состояния). В итоге работа газа за цикл получается равна:

(1)

Как видите, : не удаётся полностью превратить в работу поступающее от нагревателя тепло. Часть теплоты приходится отдавать холодильнику — для обеспечения цикличности процесса.

Показателем эффективности превращения энергии сгорающего топлива в механическую работу служит коэффициент полезного действия теплового двигателя.

КПД теплового двигателя — это отношение механической работы к количеству теплоты , поступившему от нагревателя:

С учётом соотношения (1) имеем также

(2)

КПД теплового двигателя, как видим, всегда меньше единицы. Например, КПД паровых турбин приблизительно , а КПД двигателей внутреннего сгорания около .

Холодильные машины

Житейский опыт и физические эксперименты говорят нам о том, что в процессе теплообмена теплота передаётся от более нагретого тела к менее нагретому, но не наоборот. Никогда не наблюдаются процессы, в которых за счёт теплообмена энергия самопроизвольно переходит от холодного тела к горячему, в результате чего холодное тело ещё больше остывало бы, а горячее тело — ещё больше нагревалось.

Рис. 3. Холодильная машина

Ключевое слово здесь — «самопроизвольно». Если использовать внешний источник энергии, то осуществить процесс передачи тепла от холодного тела к горячему оказывается вполне возможным. Это и делают холодильные
машины.

По сравнению с тепловым двигателем процессы в холодильной машине имеют противоположное направление (рис. 3).

Рабочее тело холодильной машины называют также хладагентом. Мы для простоты будем считать его газом, который поглощает теплоту при расширении и отдаёт при сжатии (в реальных холодильных установках хладагент — это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации).

Холодильник в холодильной машине — это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты , в результате чего газ расширяется.

В ходе сжатия газ отдаёт теплоту более нагретому телу — нагревателю. Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении.

Это возможно лишь за счёт работы , совершаемой внешним источником (например, электродвигателем (в реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло)). Поэтому количество теплоты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холодильника, как раз на величину :

Таким образом, на -диаграмме рабочий цикл холодильной машины идёт против часовой стрелки. Площадь цикла — это работа , совершаемая внешним источником (рис. 4).

Рис. 4. Цикл холодильной машины

Основное назначение холодильной машины — охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда — в неё рассеивается отводимое от резервуара тепло.

Показателем эффективности работы холодильной машины является холодильный коэффициент, равный отношению отведённого от холодильника тепла к работе внешнего источника:

Холодильный коэффициент может быть и больше единицы. В реальных холодильниках он принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос. Тогда её назначение — нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда — холодильником.

Показателем эффективности работы теплового насоса служит отопительный коэффициент, равный отношению количества теплоты, переданного обогреваемому резервуару, к работе внешнего источника:

Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

Тепловая машина Карно

Важными характеристиками тепловой машины являются наибольшее и наименьшее значения температуры рабочего тела в ходе цикла. Эти значения называются соответственно температурой нагревателя и температурой холодильника.

Мы видели, что КПД теплового двигателя строго меньше единицы. Возникает естественный вопрос: каков наибольший возможный КПД теплового двигателя с фиксированными значениями температуры нагревателя и температуры холодильника ?

Пусть, например, максимальная температура рабочего тела двигателя равна , а минимальная — . Каков теоретический предел КПД такого двигателя?

Ответ на поставленный вопрос дал французский физик и инженер Сади Карно в 1824 году.

Он придумал и исследовал замечательную тепловую машину с идеальным газом в качестве рабочего тела. Эта машина работает по циклу Карно, состоящему из двух изотерм и двух адиабат.

Рассмотрим прямой цикл машины Карно, идущий по часовой стрелке (рис. 5). В этом случае машина функционирует как тепловой двигатель.

Рис. 5. Цикл Карно

Изотерма . На участке газ приводится в тепловой контакт с нагревателем температуры и расширяется изотермически. От нагревателя поступает количество теплоты и целиком превращается в работу на этом участке: .

Адиабата . В целях последующего сжатия нужно перевести газ в зону более низких температур. Для этого газ теплоизолируется, а затем расширяется адиабатно на учатке .

При расширении газ совершает положительную работу , и за счёт этого уменьшается его внутренняя энергия: .

Изотерма . Теплоизоляция снимается, газ приводится в тепловой контакт с холодильником температуры . Происходит изотермическое сжатие. Газ отдаёт холодильнику количество теплоты и совершает отрицательную работу .

Адиабата . Этот участок необходим для возврата газа в исходное состояние. В ходе адиабатного сжатия газ совершает отрицательную работу , а изменение внутренней энергии положительно: . Газ нагревается до исходной температуры .

Карно нашёл КПД этого цикла (вычисления, к сожалению, выходят за рамки школьной программы):

(3)

Кроме того, он доказал, что КПД цикла Карно является максимально возможным для всех тепловых двигателей с температурой нагревателя и температурой холодильника .

Так, в приведённом выше примере имеем:

В чём смысл использования именно изотерм и адиабат, а не каких-то других процессов?

Оказывается, изотермические и адиабатные процессы делают машину Карно обратимой. Её можно запустить по обратному циклу (против часовой стрелки) между теми же нагревателем и холодильником, не привлекая другие устройства. В таком случае машина Карно будет функционировать как холодильная машина.

Возможность запуска машины Карно в обоих направлениях играет очень большую роль в термодинамике. Например, данный факт служит звеном доказательства максимальности КПД цикла Карно. Мы ещё вернёмся к этому в следующей статье, посвящённой второму закону термодинамики.

Тепловые двигатели и охрана окружающей среды

Тепловые двигатели наносят серьёзный ущерб окружающей среде. Их повсеместное использование приводит к целому ряду негативных эффектов.

• Рассеяние в атмосферу огромного количества тепловой энергии приводит к повышению температуры на планете. Потепление климата грозит обернуться таянием ледников и катастрофическими бедствиями.• К потеплению климата ведёт также накопление в атмосфере углекислого газа, который замедляет уход теплового излучения Земли в космос (парниковый эффект).

• Из-за высокой концентрации продуктов сгорания топлива ухудшается экологическая ситуация.

Это — проблемы в масштабе всей цивилизации. Для борьбы с вредными последствиями работы тепловых двигателей следует повышать их КПД, снижать выбросы токсичных веществ, разрабатывать новые виды топлива и экономно расходовать энергию.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/teplovye-mashiny/

Чиллер что это такое и как он работает, принцип работы чиллера с воздушным и водяным охлаждением

Чиллер, что это такое и для чего он нужен? Чем он отличается от кондиционеров, и каков его принцип работы? Если вы столкнулись с вопросом выбора или обслуживания климатического оборудования, об этих вещах стоит знать.

Многие считают, что чиллер – это просто большой кондиционер. Но такое мнение в корне неверно. Такое холодильное оборудование имеет свои отличия и особенности. В этой публикации мы расскажем, какие бывают виды таких холодильных машин и чем они отличаются.

Чиллер: что это такое и как он работает

Чиллеры (англ. Chiller – холодильник, холодильная машина) – устройства для обеспечения охлаждения или обогрева в промышленных масштабах. Их часто используют на производствах, для обеспечения микроклимата в торговых центрах, жилых домах, офисных зданиях.

Это климатическое оборудование можно сравнить с наружным блоком кондиционера, к которому подключено большое количество внутренних. В их качестве выступают фанкойлы, поэтому такая система называется «чиллер-фанкойл» принцип работы чиллера таков, что к нему можно подключить любые типы фанкойлов и их комбинации.

Как и в обычном кондиционере, производство тепла или холода происходит за счет циклов испарения и конденсации хладагента. Но в отличие от сплит-систем, он циркулирует только в самом устройстве.

Между основным блоком чиллера и фанкойлами проложена магистраль, по которой циркулирует вода, являющаяся теплоносителем. Иногда вместо нее используют гликоль, его производные и их смеси с водой.

Рабочий цикл

Основными элементами чиллера являются:

  1. Компрессор;
  2. Конденсатор;
  3. Испаритель;
  4. Теплообменник.

Компрессор сжимает фреон, повышая его давление настолько, что он переходит в жидкое состояние. При этом его температура существенно повышается.

Попадая в конденсатор, фреон отдает тепло воздуху или воде. Он охлаждается и переходит в испаритель.

В испарителе установлен регулирующий вентиль, который контролирует количество хладагента. Фреон расширяется и переходит в газообразное состояние. При этом его температура падает.

В таком состоянии он переходит в теплообменник, где охлаждает воду в магистрали. Холодная вода поступает в фанкойлы, тем самым обеспечивая их работу.

В том случае, когда чиллер работает на обогрев, процесс такой же, но циркуляция идет в обратном порядке.

Пример работы (значения приведены для наглядности)

  • Перед попаданием в компрессор фреон имеет температуру 0 градусов. После сжатия и перехода в жидкую фазу она повышается до +60.
  • Проходя через конденсатор хладагент охлаждается до +30 °С.
  • В испарителе фреон переходит в состояние газа, его температура падает до -15 градусов.
  • Протекая через теплообменник, он нагревается от воды до 0 °С.
  • Цикл повторяется снова.

Преимущества и недостатки чиллеров

По своему назначению чиллеры схожи с прецизионными кондиционерами, мультизональными или мульти-сплит системами. Они так же призваны обеспечивать микроклимат в нескольких помещениях и больших объемах. Но имеют ряд принципиальных отличий.

В системах чиллер-фанкойл за обогрев или охлаждение отвечает теплоноситель – вода или антифриз. В мульти-сплит системах приток холода или тепла осуществляется хладагентом – фреоном, хладоном. Из-за разницы в теплоемкости он менее эффективен, чем теплоноситель системы чиллер-фанкойл.

В мультизональном кондиционере допускается расстояние между внутренним и наружным блоком в несколько десятков метров. При этом чем оно больше, тем быстрее падает эффективность кондиционера.

Длина труб между чиллером и фанкойлом может быть более 100 метров. При этом эффективность несколько снижается, но не так сильно, как у мульти-сплита. Все зависит от скорости потока, мощности насоса и теплоизоляции труб.

Кроме эффективности, у чиллеров есть следующие плюсы:

  • Возможность изменять количество фанкойлов;
  • Чиллер не портит внешний вид фасада здания;
  • Фреон не циркулирует к фанкойлам, поэтому при его утечке нет риска нанести вред здоровью людей;
  • Долгий срок службы;
  • Низкая стоимость монтажа фанкойлов и магистралей для теплоносителя.

Но есть у такого климатического оборудования минусы:

  • Высокая стоимость;
  • Дорогая профилактика и обслуживание.

Как работает чиллер с воздушным охлаждением

Холодильные машины с воздушным охлаждением конденсатора наиболее распространены. Их часто можно увидеть на крышах больших зданий. Принцип работы чиллера с воздушным охлаждением основан на теплообмене между фреоном и атмосферным воздухом.

Различают два вида такого оборудования:

  • С выносным, наружным конденсатором;
  • С встроенным, внутренним конденсатором.

В первом случае блок конденсатор находится на удалении от основного блока и связан с ним магистралью, по которой циркулирует фреон. Такие установки дороже, но удобнее в обслуживании – внутренний блок можно установить в помещении.

Чиллеры с встроенным конденсатором выполнены в виде моноблока. Их монтируют снаружи здания, в основном на крыше. Их стоимость ниже, но обслуживание затруднено.

Холодильные машины с выносным конденсатором подвержены влиянию внешних факторов (осадки, механические повреждения). Они имеют меньший срок эксплуатации.

Чиллеры с встроенным конденсатором на крыше здания.

Принцип работы чиллера с водяным охлаждением

В чиллерах с водяным охлаждением конденсатора в качестве среды для отбора или сброса тепловой энергии используется вода. Это может быть пруд, река, бассейн или любой водоем. В них конденсатор находится отдельно от основного блока и погружен в воду.

Такие устройства имеют хорошую тепло- и хладопроизводительность. Они меньше подвержены зависимости от температуры окружающей среды.

На вопрос как работает чиллер с водяным охлаждением, можно ответить просто – точно так же, как с воздушным. Единственное отличие в том, что конденсатор погружен в воду, а не находится на открытом воздухе.

При этом чиллеры с водяным охлаждением более эффективны, чем с воздушным. Дело в том, что вода имеет большую теплоемкость и способна более эффективно отбирать или отдавать тепло. Но рассчитать разницу в энергопотреблении чиллеров двух вариантов можно только на индивидуальном примере.

Абсорбционный чиллер

Абсорбционный чиллер или АБХМ имеет отличный от других видов принцип работы. В его конструкции отсутствует компрессор, а давление внутри системы повышается за счет внешних источников тепла. Такое оборудование может использовать низкотемпературную тепловую энергию.

Принцип работы АБХМ — поясняем просто и понятно

Подробнее о функционировании абсорбционных чиллеров читайте в статье «Принцип работы АБХМ».

В последнее время производители ведут разработки холодильных машин малой мощности, которые можно было бы использовать в быту. Уже существуют опытные модели, но их стоимость слишком велика. Прогнозируется, что через 10-15 лет можно будет установить абсорбционный чиллер для обеспечения микроклимата в частном доме.

Промышленный абсорбционный чиллер YORK.

Вопрос-Ответ

По принципу работы чиллеры бываю парокомпрессионные и абсорбционные. По типу охлаждения или нагрева хладагента бывают чиллеры с воздушным и водяным охлаждением.

Чиллер необходим для нагрева или охлаждения воды или антифриза. Они используются как теплоноситель или хладагент в фанкойлах и другом климатическом, нагревательном или холодильном оборудовании.

Надеемся, статья была вам полезна, вы узнали что такое чиллер и его принцип работы. Если вы хотите высказать свое мнение или задать вопрос – это можно сделать в комментариях. Не забудьте поделиться статьей в соцсетях

Источник: https://VTeple.xyz/chiller-chto-eto-takoe-i-kak-on-rabotaet/

Понравилась статья? Поделиться с друзьями:
Дом холодильников