Как определить направление кулера

Правильная циркуляция воздуха в компьютерном корпусе

как определить направление кулера

Привет, дорогие читатели! Сегодня поговорим на тему: правильная циркуляция воздуха в системном блоке. Обсудим, сколько кулеров нужно в компьютере, чтобы компоненты не перегревались, с какой стороны ставить вентилятор и прочие нюансы.

Немного о современных шасси для ПК

Прошло то время, когда на рынке преобладали шасси с верхним расположением БП. Сегодня такой корпус — скорее уже раритет, и найти его в продаже бывает не просто(хоть и возможно).

Первые шасси с нижним расположением блока питания появились, если не ошибаюсь, в 2014 году. Если у вас есть более точная дата, то жду комментария. Постепенно они вытеснили традиционные шасси. Почему это произошло? Главное то, что использовать их более удобно.

Хотя компоновка современных компьютеров стандарта ATX почти не изменилась, перенос БП в нижнюю часть позволил убить нескольких зайцев одним выстрелом.

Во-первых, это лучше в плане охлаждения: так можно добиться сквозного потока воздуха. Блок питания ему не будет мешать нормально перемещаться внутри шасси. Организация не затрудненного движения потока воздуха способствует снижению температуры всех греющихся деталей.

Во-вторых, даже если вы используете не модульный БП, а со встроенными проводами, неиспользуемые проще скрыть с помощью кожуха или в шлейфах. В старых корпусах с этим были проблемы: если провода не закрепить, они висели жгутом и препятствовали нормальной циркуляции воздушного потока.

В‑третьих, сегодня многие производители оборудуют комплектующие светодиодами, а в шасси делают прозрачную боковую крышку. Многим нравится такая «новогодняя елка». Отсутствие корпуса на виду делает вид изнутри такой «витрины» более эстетичным.

В‑четвертых, так как сегодня уже не применяют ни дискеты, ни оптические диски, освободившееся место на фронтальной панели корпуса можно использовать для установки кулера.

Как правило, производители оборудуют посадочное место решеткой, которая скрывает вентилятор.

Какой стороной ставить вентилятор и где

Сильнее всего в компьютере нагреваются процессор, видеокарта и блок питания. Прочие детали греются существенно меньше.

При покупке процессора следует помнить, что в OEM комплектации поставляется только сам процессор, без кулера. В варианте бокс присутствует и стоковый вентилятор. Иногда базовой модели недостаточно, особенно если вы разгоняете процессор.

карта оборудована как минимум одним кулером. Сколько их всего будет, зависит от мощности: у производительных моделей их 2 или 3. Дополнительного охлаждения, кроме потока воздуха, не требуется.

БП нагревается не настолько сильно, чтобы ему потребовался еще и дополнительный кулер. Как правило, для охлаждения один пропеллер уже установлен производителем внутри корпуса БП. Потока воздуха для охлаждения вполне достаточно.

В современном мощном компьютере для вентиляции корпуса требуется как минимум два кулера — чтобы один из них работал на вдув, а второй на выдув.

Не стоит вообще не устанавливать дополнительные пропеллеры: так образуется застой воздуха, и детали внутри корпуса не смогут нормально охлаждаться.

Если вы хотите на выдув использовать два вентилятора, один рекомендую установить на тыльной, а второй на верхней крышке. Также парочку можно поставить на фронтальной панели. Размеры корпусов позволяют использовать 120-мм или 140 мм вентиляторы.

Да, такой компьютер будет довольно шумным, однако будет застрахован от перегрева. По поводу того, нужно ли большое количество кулеров, могу сказать, что для топового компа 4 вполне достаточно. О том, как выбрать вентилятор для корпуса ПК, читайте здесь.

Мониторинг температуры

Если вы не уверены, достаточно ли охлаждается корпус изнутри при собранной вами схеме, можно воспользоваться специальным ПО — например, SiSoftware Sandra Lite или Everest.

Рекомендованные средние значения температуры:

  • Процессор — до 90 градусов;
  • Блок питания — до 50 градусов;
  • карта — 50 ‑70 градусов;
  • Чипсет на материнской плате — до 60 градусов;
  • Жесткий диск — 30 – 40 градусов.

Также важно, где именно находится компьютер. Если он стоит на рабочем столе, то обычно проблем с охлаждением не возникает. Обычно же он помещается в специальном отсеке в компьютерном столе. Проверьте, не мешают ли стенки нормальному движению воздуха внутри корпуса.Пыль является неплохим теплоизолятором. Нужно хотя бы раз в 3 месяца открывать корпус и чистить «внутренности» компьютера. Можно использовать пылесос с пластиковой насадкой, который работает на выдув.

Будьте предельно осторожны при использовании металлической насадки. Может случиться пробой искры и спровоцировать короткое замыкание, что влечет выход из строя некоторых комплектующих.

Также для вас будут полезны статьи о типах корпусов для ПК и ТОП корпусов для ПК, выпущенных в 2018 году. Буду признателен, если вы поделитесь этим постом в социальных сетях. До скорой встречи!

Источник: https://infotechnica.ru/pro-kompyuteryi/ob-ohlazhdenii/pravilnaya-czirkulyacziya/

Как выбрать вентилятор для корпуса

как определить направление кулера

Технологии неустанно совершенствуются, специализированные программы и новейшие игры требуют всё более и более мощных компьютеров. Процессоры, видеокарты и другие компоненты компьютера ежегодно модернизируются, а это приводит и к выделению большего тепла. Чрезмерный нагрев может грозить зависаниями, поломке отдельных элементов и усиливающимся гулом кулеров. Скапливающаяся в корпусе пыль лишь усугубляет ситуацию.

На помощь приходят вентиляторы. Сегодня они практически всегда ставятся на блок питания, на процессор и на мощные видеокарты. Но зачастую этого бывает недостаточно: эти вентиляторы обслуживают только свою деталь, выбрасывая горячий воздух в корпус.

Этот процесс не только снижает эффективность кулеров, которые засасывают вновь тот же самый горячий воздух, но и приводит к нагреву других частей компьютера. Поэтому в корпусе необходима должная вентиляция, чтобы снаружи воздух подавался, а изнутри — выдувался.

Именно для этого нужны вентиляторы для корпуса.

К сожалению, для многих это вопрос суммы, оставшейся со сдачи. Мало того, при выборе корпусного вентилятора покупатели часто ориентируются только на его размер. Это в корне неверно, так как неправильно подобранный вентилятор приведёт к лишнему раздражающему шуму, да и прослужит очень мало. Если же подходить к вопросу серьёзно, необходимо разобраться в параметрах корпусных вентиляторов.

Размер вентилятора

Речь идёт о физических размерах каркаса, помогающих ориентироваться при подборе вентиляторов к различным комплектующим и к корпусу. Это важнейшая характеристика, потому что при несоответствии параметрам корпуса вентилятор просто не получится вставить. Существует множество стандартных размеров вентиляторов: от 25х25 мм до 200х200 мм.

Вентиляторы размером от 25х25 до 70х70 мм нужны для охлаждения небольших участков, например, северного или южного моста на материнской плате. В связи со спецификой использования выбор таких вентиляторов не столь велик. Применяются в тонких серверах для продува корпуса на высоких оборотах.

Вентиляторы размером 80х80 и 92х92 мм являются стандартными для небольших корпусов. Их можно использовать, к примеру, в офисных компьютерах. Такие вентиляторы довольно популярны и распространены. Также их используют для особых целей, например, охлаждения материнских плат небольших размеров. Примерно 12-15 лет назад использовались в стандартных ATX корпусах практически повсеместно.

Вентиляторы размером 120х120 и 140х140 мм используют на больших корпусах. Они отлично подойдут для мощных компьютеров, например, игровых. Нужно учитывать, что чем больше вентилятор, тем меньшая скорость вращения ему требуется для создания определённого воздушного потока. Следовательно, большие вентиляторы шумят ощутимо меньше маленьких.

Вентиляторы размером 150х140 и 200х200 мм используются, когда в большом корпусе требуется дополнительный мощный поток воздуха. Они обычно ставятся на верхнюю или боковую часть корпуса. Выбор моделей такого размера не столь велик.

Также бывают вентиляторы нестандартных размеров, когда диаметр вентилятора больше расстояния между отверстиями крепления (как на картинке ниже). Учитывайте это в корпусе с плотной компоновкой вентиляторов. Два таких вентилятора с креплением 120х120 мм, но диаметром крыльчатки 140 мм не получиться поместить рядом друг с другом в корпусе с местом под крепление 120 мм вертушек.

Максимальная и минимальная скорость вращения

Скорость вращения измеряется в количестве оборотов за одну минуту. При одинаковых размерах каркаса и лопастей вентилятор с большей скоростью вращения будет охлаждать системный блок эффективнее. Средней скоростью вращения считается: у вентиляторов размером 80 мм — 2000–2700 об/мин, 90–92 мм — 1300–2500 об/мин, 120 мм — 800–1600 об/мин. Вентиляторы со скоростью вращения больше 3000 об/мин используются для специфических целей, например, для многих жидкостных систем охлаждения.

Различие минимальной и максимальной скорости вращения вентилятора указывает на возможность её регулировки. Однако стоит отметить, что чем выше скорость вращения, тем больше шума издаёт вентилятор.

Максимальный и минимальный уровень шума

Вентилятор крутится, создаётся воздушный поток, происходит трение деталей — следствием всего этого является шум. Шумность измеряется в децибелах — дБ. Чем громче вентилятор, тем, согласитесь, утомительнее рядом с ним работать, поэтому лучше выбирать наиболее тихие модели. Оптимален уровень шума не более 30–35 дБ.

Вообще, самый сложный аспект при выборе вентилятора, это найти компромисс между скоростью вращения, силой воздушного потока и шумом. Дорогие и наиболее эффективные вентиляторы славятся своим низким уровнем шума при достаточно мощном воздушном потоке.

Регулировка оборотов

Регулировать количество оборотов вентилятора в минуту нужно для того, чтобы оптимизировать работу охлаждения.

К примеру, в корпусе довольно низкая температура, а вентилятор крутится на скорости 2500 об/мин — есть смысл уменьшить количество его оборотов, чтобы понизить уровень шума и энергопотребление. Если же в корпусе наоборот слишком высокая температура, скорость вентилятора лучше увеличить.

При выборе вентилятора стоит учитывать параметры материнской платы и тип разъёма питания. Регулировка скорости вращения крыльчатки вентилятора может осуществляться несколькими способами.

Первый — автоматическая регулировка. В этом варианте скорость вентилятора управляется материнской платой автоматически или через команды пользователя (например, с помощью специального устройство, устанавливаемого на корпусе компьютера — реобаса). Материнская плата сама анализирует степень нагрева комплектующих ПК.

Второй способ — плавная ручная регулировка. В этом варианте для регулировки скорости пользователю нужно покрутить ручку управляющего резистора на специальном блоке.

При этом скорость вращения вентилятора меняется плавно, то есть её можно уменьшить или увеличить как на большие значения, так и на совсем маленькие. Проблема ручной регулировки, это риск перегрева ПК, если не следить за температурой компонентов.

При недостаточной скорости вращения воздух внутри корпуса будет закономерно сильнее нагреваться, что может повлечь за собой вылеты и зависания.

Третий способ — ступенчатая ручная регулировка. Она выполнена в виде специальных переходников, подключив через которые вентилятор, пользователь может изменить скорость его вращения. При этом нужно учесть, что количество ступеней, а значит, и количество оборотов будет строго фиксировано.

Тип разъёма питания

Сегодня существует четыре типа подключения вентиляторов: 2-pin, 3-pin, 4-pin и molex.

2-pin — специфический разъем. Применяется в блоках питания, а в обычных ПК на современных материнских платах не встречается.

3-pin — это подключение к материнской плате с возможностью наблюдения за скоростью вращения вентилятора через материнскую плату. Стоит отметить, что 3-pin кабели можно подключать и к 4-pin разъёму.

4-pin — это подключение к материнской плате с возможностью автоматической регулировки скорости вращения вентилятора в зависимости от температуры в системе. Такие вентиляторы обычно стоят на процессорах и видеокартах. Возможно подключение 4-pin кабеля к 3-pin разъёму, но при этом функция автоматического регулирования скорости вращения будет недоступна.

Molex — это подключение напрямую к блоку питания с возможностью ручной регулировки скорости вращения вентилятора.

Тип подшипника

Как вы знаете, подшипники нужны для кручения вентилятора вокруг втулки. Так как это основное место трения деталей, подшипник наиболее подвержен разрушению, а также именно его качество отвечает за уровень шума. В корпусных вентиляторах устанавливается один из четырёх видов подшипников: скольжения, качения, гидродинамический и с магнитным центрированием.

Подшипник скольжения — это простейшая конструкция подшипника, в котором трутся две полированных поверхности. Это наиболее дешёвый и тихий вариант, однако он отличается небольшим временем службы и ухудшением работы при высоких температурах. Также в силу конструкции его можно использовать только в вертикальном положении.

Подшипник качения или шарикоподшипник — более сложная конструкция, в которой предусмотрено специальное кольцо с шариками, размещённое между подвижной частью (крепящейся к оси), и неподвижной (прикреплённой к основанию).

Катящиеся шарики обеспечивают меньшее трение, чем в подшипниках скольжения, и более высокую надёжность. Ресурс таких вентиляторов может достигать 15000 часов непрерывной работы, их можно использовать при высоких температурах и в любом положении.

Главный минус такой конструкции — более высокий уровень шума из-за трения движущихся частей подшипника, особенно на высоких оборотах.

Гидродинамический подшипник — это по сути усовершенствованный подшипник скольжения. Он заполнен специальной жидкостью, создающей прослойку, по которой скользит подвижная часть подшипника. Таким образом удаётся избежать непосредственного контакта между твёрдыми поверхностями и значительно снизить трение. Гидродинамические подшипники более долговечны в сравнении с их предшественниками, а также практически бесшумны.

Подшипник с магнитным центрированием основаны на принципе магнитной левитации. Основа конструкции — вращающаяся ось, «подвешенная» в магнитном поле. Таким образом удаётся избежать контакта между твёрдыми поверхностями и ещё больше снизить трение. Это самый совершенный, долговечный и бесшумный тип подшипников. Его минус — высокая стоимость.

Воздушный поток на максимальной скорости

Эта характеристика — одна из самых важных при выборе вентилятора для корпуса. Она обозначает число кубических футов воздуха в минуту, которые способен прогнать через себя вентилятор системы охлаждения. Чем выше это число, тем эффективней будет охлаждение.

Воздушный поток зависит от многих факторов, таких как диаметр вентилятора, размер лопастей, скорость вращения, материал, из которого изготовлен вентилятор. При различных комбинациях этих параметров стоит обращать особенное внимание именно на воздушный поток.

Дизайн

Помимо всего прочего, вентиляторы различаются внешним видом: от цвета лопастей до наличия подсветки. Конечно, если ваш компьютер спрятан глубоко под столом, вряд ли это будет иметь для вас значение. Но для профессионалов, особенно геймеров, обустраивающих своё игровое пространство, эта характеристика может сыграть свою роль.

Критерии выбора

Вентиляторы для корпуса играют важную роль в продевании срока службы компьютера. Но выбрать их не так просто, так как для различных целей подойдут разные модели. Мы распределили вентиляторы на группы, исходя из потребностей пользователя.

Для компьютера обычного пользователя или офисного компьютера

Источник: https://club.dns-shop.ru/blog/t-109-ventilyatoryi-ohlajdeniya/16724-kak-vyibrat-ventilyator-dlya-korpusa/

Как правильно установить вентиляторы в корпусе компьютера

как определить направление кулера

Устройство компьютера довольно сложное – он состоит из множества блоков, каждый из которых выделяет много тепла.

Перегрев любого из них может привести в лучшем случае к неправильной работе и аварийному выключению компьютера, в худшем – к выходу из строя. Особенно сильно нагреваются процессор, видеокарта, микросхемы северного и южного моста на материнской плате.

Но и прочие узлы также греются – например, винчестер при активной работе нагревается весьма ощутимо. Поэтому компьютер нуждается в охлаждении.

ЭТО ИНТЕРЕСНО:  Как установить температуру в холодильнике

Порядок установки вентиляторов в корпус компьютера.

Типичное воздушное охлаждение для компьютера

Самая распространённая и дешёвая система охлаждения, применяемая в компьютерах – воздушная, которая работает с помощью специальных вентиляторов. Для лучшего отвода тепла и увеличения теплоотводящей поверхности на самые важные детали ставят металлические радиаторы.

Они отводят немало тепла, но площадь их ограничена, поэтому дополнительно используются вентиляторы. Например, он есть на главном процессоре, помимо радиатора, так как это одна из самых важных и самых горячих микросхем.

Для лучшего эффекта в системный блок должен быть установлен хотя бы один дополнительный кулер, который будет создавать постоянную циркуляцию воздуха и выводить горячий наружу. В большинстве компьютеров, особенно в минимальной конфигурации – так называемом офисном варианте, никакого дополнительного охлаждения не устанавливают.

Однако в таких моделях всё равно есть один кулер – в блоке питания, который расположен в верхней части компьютера. Тёплый воздух, поднимаясь вверх от материнской платы и дополнительных устройств, с его помощью выдувается наружу. Но эта конструкция имеет недостатки:

  • Весь теплый воздух идёт через блок питания, который и сам не слабо греется, отчего его детали перегреваются ещё быстрее. Поэтому он выходит из строя чаще всего.
  • В корпусе компьютера создаётся пониженное давление, и для выравнивания его воздух поступает внутрь откуда попало – через все щели. Поэтому внутри быстро скапливается множество пыли, ещё больше ухудшающей отвод тепла.
  • Создаваемый поток не особо стабильный, опять же, из-за притока его со всех возможных отверстий. Создаются ненужные и вредные завихрения, сильно снижающие эффективность всей системы.
  • Воздушный поток не очень сильный, для низко расположенных устройств, например, видеокарты, явно недостаточный.

Поэтому требуется установка дополнительных кулеров в системном блоке. Стоят они недорого и поставить их можно самостоятельно.

Как можно установить вентиляторы в корпус компьютера

Установка кулеров в системном блоке производится по разным схемам. Перед началом работы с ними нужно обязательно ознакомиться, так как неправильное расположение этих узлов может принести еще больше вреда, чем их отсутствие. Обычно на материнской плате имеется пара разъёмов для охлаждения. Их можно задействовать оба или только один. Схемы установки вентиляторов в корпусе компьютера тогда будут такими:

  1. На задней стенке вверху, напротив процессора.
  2. На передней стенке.
  3. Использование двух вентиляторов – переднего и заднего.

Можно выбрать любой из этих вариантов, но самый предпочтительный – последний. Заметим, что использование только одного кулера так или иначе нарушает воздушный баланс в замкнутой системе. Поэтому рассмотрим каждый вариант по отдельности.

Расположение на задней стенке

Установленный сзади вентилятор должен работать на выдув, то есть выводить теплый воздух наружу. При этом тёплый воздушный поток уже не идёт сквозь блок питания и не вызывает его перегрева. К тому же, улучшается охлаждение процессора. Этот вариант имеет недостаток – в корпусе создаётся разрежённость, и приток воздуха через всевозможные отверстия в корпусе приносит с собой много пыли. Однако применение такой схемы всё равно заметно улучшает ситуацию.

Расположение на передней стенке

Этот вентилятор должен располагаться в нижней части, желательно напротив винчестера, и работать на вдув. Он не только непосредственно охлаждает винчестер, но и способствует выравниванию давления внутри корпуса. Поток естественным путем идёт снизу-вверх, обтекая все важные узлы и нагретым выдувается сверху наружу.

Двойной вариант

Установка пары вентиляторов в корпус компьютера – лучший вариант. Один из них должен стоять под блоком питания на задней стенке и работать на выдув. Второй – фронтальный, устанавливается на передней стенке, и работает на вдув.

Это самое правильное расположение кулеров в системном блоке, так как создаёт хороший воздушный поток мимо всех узлов. Большой плюс – баланс внутреннего давления не позволяет скапливаться пыл внутри корпуса.

Но всё будет работать отлично лишь при соблюдении пары правил:

  • Размер вентиляторов лучше выбирать максимальным для места установки – если туда можно установить 140-миллиметровую модель, то ставьте её, иначе остановитесь на 120-миллиметровом варианте.
  • Нужно контролировать, куда должен дуть вентилятор в корпусе компьютера. Передний – на вдув, задний – на выдув. Иначе внутреннее давление и циркуляция воздуха нарушатся, и в результате будет больше вреда, чем пользы.

Основные ошибки при установке охлаждения

Важно знать, как правильно поставить кулеры в системном блоке. Неправильно работающая система охлаждения может быть неэффективной, или, наоборот, создавать условия для быстрого перегрева. Самое главное здесь – в какую сторону дует кулер корпуса.

  • Установлен лишь задний вентилятор, работающий на «вдув». При этом выходящий из блока питания теплый воздух тут же подаётся снова внутрь и движется по тому же кругу наружу. В нижней части корпуса циркуляции вообще не создаётся, и там всё нагревается.
  • Установлен только передний вентилятор, который работает на «выдув». Так в корпусе будет создаваться пониженное давление, и быстро накопится очень много пыли. Отвод тепла не будет происходить, поэтому всё будет перегреваться, и компьютер постоянно будет держать кулеры на максимальных оборотах, так что ещё и шум будет намного больше.
  • Задний кулер вдувает воздух, а передний – выдувает. Это ненормально хотя бы потому, что тёплый воздух поднимается вверх, и его поток нельзя направить вниз. Поэтому эффект будет таким же, как в предыдущем пункте.
  • Оба кулера вдувают внутрь. В корпусе создаётся избыточное давление, вентиляторы работают на износ, а пользы, естественно, нет.
  • Оба кулера выдувают. Это самая опасная ситуация, так как в корпусе создаётся пониженное давление, нарушается циркуляция воздуха, и все компоненты компьютера очень быстро перегреваются.

Как видите, очень важно, какой стороной установлен кулер. Стоит его перевернуть, и он начнёт дуть не в ту сторону. Поэтому это всегда надо проверять. Правильная установка вентиляторов в корпус ПК – верхний задний должен выдувать воздух, а нижний передний – вдувать.

Тогда циркуляция его будет естественной и правильной, а система охлаждения будет работать максимально эффективно. Теперь вы знаете, как правильно установить кулеры охлаждения в системном блоке. Если вы устанавливали их сами, проверьте их работу.

Если только собираетесь этим заняться, сделаете всё грамотно сразу.

Источник: https://nastroyvse.ru/devices/raznoe/kak-ustanovit-ventilyatory-v-korpuse-kompyutera.html

Как установить вентилятор на выдув

Компьютер включает в себя огромное число различных элементов, которые обеспечивают бесперебойную работу устройства. Вентиляторы – это одни из таких обязательных компонентов. Данные компоненты отвечают за охлаждение других элементов с помощью воздуха. Со временем компьютер начинает перегреваться, требуется замена существующего вентилятора. Установление нового элемента понизит температуру, а его работа станет гораздо тише.

Как определить работу вентилятора: на вдув или выдув?

Определение типа вентилятора

У многих возникает вопрос по поводу того, как определить работу вентилятора на вдув или выдув? Сделать это достаточно просто, в этом поможет направление лопастей. Если аппарат на выдув, то лопасти загребаются по направлению вниз. Движение происходит против часовой стрелки.

Корпусы сегодняшних охладительных компьютерных элементов имеют стрелки, которые изображают вращательное направление и направление воздушного потока. Любой агрегат обладает двумя стрелками.

Одной стрелкой указывается, куда направляются лопасти, другой стрелкой изображается направление потока.

Особенности

Данные компьютерные компоненты не только подают воздух для охлаждения остальных элементов устройства, что является не самым действенным методом охлаждения. Целью данных аппаратов должно быть создание воздуха во внутренней части корпуса. То есть холодный воздух должен затягиваться, а горячий – выбрасываться.

Как мы узнали раньше, агрегаты для охлаждения обладают одним направлением воздуха. Это направление обозначается стрелкой. Местоположение стрелки – корпус аппарата. Если стрелка отсутствует, то поможет наклейка, которая находится на моторе. Обычно воздушный поток имеет направление в сторону наклейки.

Для установления лучше использовать больше аппаратов, которые производят выдув. Это нужно для создания, так называемого вакуума во внутренней корпусной части. Холодный поток сможет поступать в корпус с абсолютного любого отверстия.

Установка

Вентиляторы на вдув или выдув, как ставить? Рассмотрим подробный алгоритм действий:

  1. Начнем с задней панели. Кулер блока питания, находящийся у задней панели, функционирует на выдув воздуха. Проведите установление одного или двух компонентов. Компоненты должны выдувать поток.
  2. Перейдем к передней панели. Необходимо произвести установку компонента, выполняющего вдув. Также можно провести установку второго кулера в отсеке, который предназначается для хард-диска (накопителя).
  3. Следующая часть – это боковая панель. Здесь понадобится аппарата, который производит выдув. Достаточно всего лишь одного бокового компонента.
  4. Последняя часть – это верхняя панель. Установите кулер, который выполняет вдув. Не устанавливайте устройство, которое производит выдув, потому что горячий воздушный поток направляется вверх, что приведет к избыточности кулеров, которые функционируют на выдув. Будет также не хватать аппаратов, выполняющих вдув.

Перейдем к непосредственному установлению. Чтобы выполнить данную процедуру, необходимо воспользоваться четырьмя винтами. Надо произвести прочную фиксацию аппарата, чтобы он не издавал шума. Помните о следующем:

  • Надо убедиться, что кабели не смогут попасть в лопасти. Кабели следует оттянуть. Сделать это можно при помощи кабельных стяжек.
  • Если зафиксировать кулер винтами проблематично, то нужно воспользоваться скотчем для того, чтобы приклеить его к отверстию вентиляции. После этого проводится фиксация при помощи винтов. Обязательно устраните скотч по окончанию данной процедуры.

Далее производится подключение.

Способ подключения к разъемам на материнской плате через специальный кабель

Подключение двух аппаратов проводится к разъемам, располагающихся на материнской плате. Другие компоненты подключаются к блоку питания. Работу подключенных к блоку питания вентиляторов контролировать у вас не получится. Невозможно будет проводить контроль скорости вращения. Они в данном случае будут выполнять работу с максимальной скоростью.

Потом необходимо закрыть корпус. Во внутренней части корпуса будет циркулировать охлажденный воздушный поток. Открытый корпус не даст такой возможности. Эффективность охлаждения компьютерных устройств будет значительно ниже.

Источник: https://moreremonta.info/strojka/kak-ustanovit-ventiljator-na-vyduv/

Конструируем систему охлаждения компьютера

О чём эта статья

Эта статья обобщает опыт автора по конструированию эффективных и малошумящих систем воздушного охлаждения компьютеров. Рассматриваются основные принципы построения системы охлаждения, приведены результаты некоторых исследований в этой области и множество практических рекомендаций. Используя приведённые здесь материалы, вы сможете сконструировать систему охлаждения под собственные нужды, исходя из ваших потребностей и возможностей. Введение

Ни для кого не секрет, что высокое быстродействие современных компьютеров имеет свою цену: они потребляют огромную мощность, которая рассеивается в виде тепла. Основные числодробилки — центральный процессор, графический процессор — требуют собственных систем охлаждения; прошли те времена, когда эти микросхемы довольствовались маленьким радиатором.

Новый системный блок оборудуется несколькими вентиляторами: как минимум один в блоке питания, один охлаждает процессор, мало-мальски серьёзная видеокарта комплектуется своим вентилятором. Несколько вентиляторов установлены в корпусе компьютера, встречаются даже материнские платы с активным охлаждением микросхем чипсета.

30°C, 40°C, 50°C, 60°C Мы привыкаем к всё более высоким температурам процессора, чипа видеокарты и других компонентов компьютера. Некоторые современные жёсткие диски также разогреваются до заметных температур.

Большинство компьютеров оборудуется охлаждением по принципу минимизации стоимости: устанавливается один, два шумных корпусных вентилятора, процессор оборудуется штатной системой охлаждения. Такой подход имеет право на жизнь: охлаждение получается достаточным, дешёвым, но очень шумным. Как сохранить эффективность, снизив при этом уровень шума?

Существует другая крайность — сложные технические решения: жидкостное (обычно водяное) охлаждение, фреоновое охлаждение, специальный алюминиевый корпус компьютера, который рассеивает тепло по всей своей поверхности (по сути, работает как радиатор).

Для некоторых задач такие решения использовать необходимо: например, для студии звукозаписи, где компьютер должен быть полностью бесшумен. Для обычного домашнего и офисного применения такие специализированные системы чересчур дороги: их цены начинаются от сотни долларов и выше.

Подобные варианты на сегодня весьма экзотичны, и в рамках этой статьи рассматриваться не будут: ограничимся классическими схемами воздушного охлаждения. Общие принципы

Попробуем разобраться в процессах, которые происходят при охлаждении. Понимая, что творится внутри системного блока, мы сможем грамотно выбрать стратегию модификации системы охлаждения.

Физика охлаждения

Все системы охлаждения используют общий принцип действия: перенос тепла от более горячего тела (охлаждаемого объекта) к менее горячему (системе охлаждения). При постоянном нагреве охлаждаемого объекта, рано или поздно прогреется также и система охлаждения, температура её сравняется с температурой охлаждаемого объекта, передача тепла прекратится — это вызовет перегрев.

Чтобы этого не случилось, необходимо организовать подвод некоего холодного вещества, способного охлаждать саму систему охлаждения. Такое вещество принято называть хладагентом (теплоносителем). В статье рассматриваются воздушные системы охлаждения, то есть, хладагентом выступает воздух.

Будем считать, что вокруг компьютера есть неограниченный запас холодного воздуха: это предположение справедливо, если объём комнаты, в которой установлен один или несколько компьютеров, достаточно велик — воздух в комнате не нагревается существенно при помощи компьютеров. Типичная комната в жилом доме или офисе вполне удовлетворяет этим требованиям.

Внимание! Это предположение будет неверным при проектировании охлаждения серверной комнаты: большое количество техники, собранной в небольшом объёме, требует дополнительной принудительной вентиляции.

Существует несколько механизмов переноса тепла. Первый: теплопроводность, способность вещества проводить тепло внутри своего объёма; в этом случае нужно только создать физический контакт некоторого объёма вещества с охлаждаемым объектом.

Из доступных веществ наилучшей теплопроводностью обладают металлы, радиаторы и теплообменники систем охлаждения как раз из них и изготавливаются. Среди металлов лучше всех проводит тепло серебро, из менее дорогих — медь, затем алюминий; как правило, именно поэтому медные радиаторы имеют бoльшую эффективность, чем алюминиевые.

Воздух, кстати, имеет очень невысокую теплопроводность (благодаря этому оконные пакеты в наших домах сохраняют тепло). Второй механизм: конвективный теплообмен с хладагентом, связан с физическим переносом охлаждающего вещества; для эффективного охлаждения нужно организовать свободную циркуляцию воздуха.

Категорически не рекомендуется устанавливать компьютер в глухой, закрытый ящик стола; также плохо, если компьютер установлен рядом с радиатором отопления. Третий механизм: тепловое излучение, его величина пренебрежимо мала в рассматриваемых процессах.

Для организации переноса тепла к хладагенту необходимо организовать тепловой контакт системы охлаждения с воздухом. Для этого конструируют различные радиаторы (англ.: heatsink). Очевидно, чем больше площадь теплового контакта, тем интенсивнее передаётся тепло. Используют два метода увеличения площади радиатора.

Первый: увеличение площади рёбер при сохранении размера радиатора; оребрение получается более густым, сами рёбра — более тонкими. Теплообмен в таком радиаторе улучшается, но растёт его гидравлическое сопротивление: необходимо создать бóльшее давление, чтобы прокачать через радиатор заданный объём воздуха.

Второй метод: увеличение геометрических размеров радиатора, что позволяет вовлечь в процесс теплообмена бóльший объём воздуха, также снижается гидравлическое сопротивление радиатора. Таким образом, предпочтительными оказываются радиаторы больших размеров.

Обратная сторона медали: стоимость и шум

Казалось бы, исходя из всего сказанного выше, следует простой вывод: нужно взять радиаторы больше, да организовать поток воздуха мощнее —  и вся наука! Однако есть ещё два важных фактора: стоимость системы охлаждения и шум, который она создаёт при работе.

ЭТО ИНТЕРЕСНО:  Как разобрать холодильник samsung

Стоимость систем охлаждения растёт с ростом размера используемых радиаторов: повышается металлоёмкость и сложность обработки. Из-за бoльшей стоимости, медные радиаторы используются гораздо реже, чем алюминиевые. В недорогих компьютерах обычно устанавливаются один-два дешёвых вентилятора, работающих на высокой скорости.

Они справляются с охлаждением, но создают много шума; а ведь малошумностью определяется комфорт пользователя.

Таким образом, перед нами встаёт задача сконструировать систему охлаждения достаточной эффективности, при этом минимизировать шум от её работы и стоимость. Охлаждение процессоров и видеокарт

Центральный процессор и графический процессор — самые мощные источники тепла внутри современного компьютера. Разработано множество различных конструкций систем охлаждения для этих компонент, разнообразие конструкторских решений поражает воображение. Классификация, описание и сравнение этих кулеров выходят за рамки этой статьи: обратитесь к соответствующим разделам популярных сайтов компьютерной тематики: iXBT.com, Overclockers.ru и другим. Ограничимся общими рекомендациями.

Источник: https://www.ixbt.com/cpu/pc-cooling-construction.shtml

Общие сведения о вентиляторах

Вентилятор — приводимое двигателем устройство для создания потока воздуха или иных газов. Вентиляторы используются в системах кондиционирования, вентиляции, обогрева, пневмотранспорта, с их помощью организуется движение воздушных потоков в котлах, охлаждаются радиаторы двигателей внутреннего сгорания, создается тяга в пылесосах, системах охлаждения и сушки.

Вентиляторы создают относительно невысокое избыточное давление (разрежение), обычно не превышающее 12 кПа. Для создания более высоких давлений вместо вентиляторов используют воздуходувки и компрессоры.

Существуют два наиболее распространенных типа вентиляторов:

а) центробежные (радиальные);

б) осевые.

Есть еще и вентиляторы диаметральные, вентиляторы диагональные, но к настоящему времени широкого распространения в промышленных вентиляционных системах они не получили, поэтому и рассматривать мы их пока не будем.

Центробежный (или радиальный) вентилятор имеет расположенное в спиральном корпусе рабочее колесо, при вращении которого газ, поступающий через входное отверстие, попадает в каналы между лопатками, под действием возникающей центробежной силы перемещается в спиральный кожух и направляется в выпускное отверстие. Направление потока газов при этом изменяется на 900.

Лопатки центробежных вентиляторов могут быть трех типов: радиальные (прямые), загнутые вперед и загнутые назад; соответственно различаются и технические характеристики вентиляторов и, как следствие, их назначение.

Вентиляторы с радиальными лопатками часто применяются для перемещения запыленных газовоздушных сред.

Вентиляторы с загнутыми назад лопатками могут работать на более высоких скоростях вращения.

Вентиляторы с лопатками, загнутыми вперед, обеспечивают большую (по сравнению с другими типами) производительность и давление.

Общепринято разделение вентиляторов по нескольким показателям:

По величине создаваемого при перемещении воздуха полного давления:

— вентиляторы низкого давления (до 1 кПа);

— вентиляторы среднего давления (до 3 кПа);

— вентиляторы высокого давления (до 12 кПа).

В зависимости от состава перемещаемой среды и условий:

— обычные — для воздуха (газов) с температурой до 80°С;

— коррозионностойкие — для агрессивных сред;

— термостойкие — для воздуха с температурой 80-200 °С;

— взрывобезопасные и искрозащищенные — для взрывоопасных сред;

— пылевые — для запыленного воздуха (твердые примеси в количестве более 100 мг/м³).

По месту установки:

— обычные, устанавливаемые на специальной опоре (раме,фундаменте и т.д.);

— канальные, устанавливаемые непосредственно в воздуховоде;

— крышные, размещаемые на кровле.

Такое разделение весьма условно. Скажем, вентилятор низкого давления ВЦ 4-75 может создавать полное давление более 2 кПа, а ВЦ 14-46 (среднего давления) не всегда дотягивает до тех же 2 кПа. И на кровле можно устанавливать не только крышные вентиляторы, но и любые другие, лишь бы кровля была достаточно прочной. А пылевые вентиляторы замечательно работают и с чистым воздухом.

Вот конструктивное исполнение вентиляторов строго регламентировано. Согласно ГОСТ 5976-90, радиальные вентиляторы (кроме канальных) могут выпускаться в 7 исполнениях.

Наиболее распростанены (в порядке убывания):

— исполнение 1 (рабочее колесо монтируется непосредственно на валу электродвигателя). Достоинтства налицо: минимум деталей, минимум работы по сборке, минимум затрат на приобретение, компактность. Есть и недостатки.

Рабочие колеса вентиляторов больших номеров (8 и выше) имеют достаточно большую массу и вся эта масса воздействует на подшипники электродвигателя. Чтобы сделать профилактику двигателя и добраться до его подшипников, нужно полностью разобрать (а затем вновь собрать) вентилятор.

На рабочем месте сделать это далеко не всегда просто.

— исполнение 5 (рабочее колесо расположено консольно на валу промопоры, привод посредством клиноременной передачи).

Широко распространено для привода пылевых вентиляторов, вентиляторов высокого давления, а также вентиляторов больших номеров (8 и выше).

Достоинства: подшипники электродвигателя воспринимают меньшую радиальную нагрузку, возможность обеспечения работы двигателя в номинальном режиме подбором диаметров шкивов. Недостатки: увеличенные габариты и масса, повышенная трудоемкость обслуживания и цена.

— исполненгие 3 (рабочее колесо расположено консольно на валу промопоры, муфтовая передача). Применяется, в основном, для привода вентиляторов, работающих в специфических условиях (повышенные температуры, агрессивная среда и т.д.).

Преимущества: радиальные нагрузки на двигатель не передаются, возможна организация защиты подшипников промопоры от воздейстия перемещаемой среды (температура, влажность, агрессивность).

Недостатки примерно те же, что и в исполнении 5, хотя узлов меньше (нет натяжного устройства, ремней, ограждения проще).

Тем же ГОСТ 5976-90 и ГОСТ 22270-76 устанавливается направление вращения и угол разворота спирального корпуса вентилятора.

По определению, вентиляторы могут быть правого вращения (колесо вращается по часовой стрелке, если смотреть со стороны всасывания) и левого вращения (колесо вращается против часовой стрелки, если смотреть со стороны всасывания).

Казалось бы, все понятно и четко определено. Но нет! Есть разновидность вентиляторов, для которых и направление вращения, и угол разворота определяют совсем иначе. Это — тягодутьевые машины (дымососы и дутьеваые вентиляторы), работающие преимущественно в котельных. У них направление вращения определяют со стороны привода, а угол разворота 00 — выхлоп направлен в сторону внизу. Почему так и кому это было нужно — вопрос. 

Несколько слов о вентиляторах осевых.

Осевой вентилятор имеет расположенное в цилиндрическом корпусе рабочее колесо, состоящее из ступицы с закрепленными на ней лопастями. При вращении колеса воздух (газ) перемещается вдоль оси вращения.

Осевые вентиляторы могут иметь различные конструкции рабочего колеса и кожуха (корпуса), а также различаются формой и числом лопастей. В некоторых случаях (например, у обычного комнатного вентилятора) кожух отсутствует. Сечение лопастей может быть профилированным (объемным), но в большинстве случаев лопасти представляют собой плоские или изогнутые пластины. Изготавливают лопасти из пластмассы, алюминия или стали.

Осевые вентиляторы по сравнению с центробежными конструктивно проще, имеют больший кпд, высокопроизводительны, но не обеспечивают больших давлений.

По назначению осевые вентиляторы делят на вентиляторы общего назначения и специальные.

Вентиляторы общего назначения предназначены для перемещения чистого или мало запыленного воздуха, температура которого не должна превышать 40 0С.

Такое температурное ограничение вызвано тем, что электродвигатель, как правило, расположен в потоке перемещаемого газа, а предельное значение температуры окружающей среды для электродвигателей как раз и составляет 35-40 0С.

Выбор осевых вентиляторов общего назначения невелик — наиболее широко распространены вентиляторы типов В 06-300 и В 2,3-130, а также их более поздние модификации.

К специальным осевым вентиляторам относят вентиляторы, используемые для перемещения взрывоопасных и агрессивных газовоздушных сред, шахтные вентиляторы и вентиляторы тоннельной вентиляции, потолочные вентиляторы, птичные, вентиляторы градирен, вентиляторы, встроенные в технологическое оборудование, и т. д. 

КАК ЗАКАЗАТЬ ВЕНТИЛЯТОР? 

В идеальном случае при заказе необходимо указать тип вентилятора, его номер, каким электродвигателем его укомплектовать, направление вращения и угол разворота корпуса. И если с последними двумя вопросами все более-менее ясно, то с остальными нужно немножко разобраться.

Во-первых (как самое простое), номер вентилятора. Номер определяет диаметр рабочего колеса в дециметрах. То есть у вентилятора ВЦ 4-75-3,15 диаметр рабочего колеса составляет 315 мм, а у дымососа ДН-11,2 — 1120 мм.

Тип вентилятора. Если Вам необходим вентилятор на замену вышедшего из строя или Вы строите систему, аналогичную имеющейся — перепишите табличку на старом вентиляторе. Если ее нет — обмерьте рабочее колесо (наружный диаметр, количество лопаток, диаметр и длину посадочного отверстия в ступице). Можно еще указать внутренние размеры всасывающего и нагнетательного патрубков. Обычно этого оказывается достаточно для определения типа вентилятора.

В случае проектирования (монтажа) новой вытяжной, приточной или технологической системы вентиляции необходимо знать производительность и полное давление, которые должен обеспечить вентилятор.

Производительность — это объем воздуха, удаляемого (нагнетаемого) из проветриваемого помещения или рабочего места. Выражается обычно в м3/час.

Полное давление в общем случае должно компенсировать сопротивление проходу воздуха в воздуховодах и сетевом оборудовании (клапаны, заслонки, воздухонагреватели, фильтры, шумоглушители и т.д.). Единица измерения полного давления — Па.

В справочной литературе и почти на всех сайтах (в том числе и на нашем) предприятий, занимающихся вентиляторами, приводятся их аэродинамические характеристики.

Аэродинамические характеристики представляют собой набор прямых и кривых линий. С осями просто: горизонтальная ось — производительность вентилятора в м3/час, вертикальная — полное давление в Па.

Необходимую рабочую точку (производительность-давление) находим на жирной кривой (которая и является характеристикой вентилятора), затем определяем мощность электродвигателя, частоту его вращения и (скорее для себя) кпд вентилятора.

Параметры электродвигателя (мощность и частота вращения) указаны на ближайших тонких кривых, расположенных над характеристикой вентилятора. Кпд вентилятора — наклонные прямые линии.

Все аэродинамические характеристики вентиляторов приведены для стандартных условий.

Стандартными условиями считаются следующие (ГОСТ 10616-90):

— температура воздуха — 293 К (20 0С);

— атмосферное давление — 101,34 кПа;

— плотность воздуха — 1,2 кг/м3;

— относительная влажность воздуха — 50%.

Поэтому, если условия эксплуатации вентиляторов отличаются от стандартных (почти всегда), необходимо это учитывать.

Следует сказать, что выполнить расчет сетей и учесть все потери давления с высокой точностью почти невозможно, поэтому вентиляторы лучше выбирать с запасом по давлению на 10-20%.

Источник: http://kharintech.com.ua/page/123

Как определить вентилятор на вдув или выдув и как установить вентилятор на выдув и вдув

Компьютер включает в себя огромное число различных элементов, которые обеспечивают бесперебойную работу устройства. Вентиляторы – это одни из таких обязательных компонентов. Данные компоненты отвечают за охлаждение других элементов с помощью воздуха. Со временем компьютер начинает перегреваться, требуется замена существующего вентилятора. Установление нового элемента понизит температуру, а его работа станет гораздо тише.

Как определить работу вентилятора: на вдув или выдув?

Как правильно установить вентиляторы в корпус компьютера

Одним из способов снижения температуры компьютерных комплектующих является установка дополнительных вентиляторов. С их помощью можно усилить движение воздуха и как следствие улучшить охлаждение. В данной инструкции мы расскажем, как правильно подобрать и установить вентиляторы (кулеры) в корпус компьютера.

Выбор мест для установки вентиляторов

Если вы задумались об установке дополнительных вентиляторов в корпус компьютера, то для начала вам нужно определиться с местами, куда вы будете их устанавливать. Чтобы выбрать правильные места необходимо понимать, как двигаются потоки воздуха внутри компьютера.

Дело в том, что нагретый воздух под влиянием конвекции сам поднимается к верхней части корпуса. Этот эффект можно использовать для улучшения охлаждения.

Если кулеры не будут противостоять естественной конвекции, а наоборот усиливать ее поток, то охлаждение будет более эффективным.

Существует стандартная схема установки кулеров, которая принимает во внимание естественное движение воздуха:

  • кулеры на вдув размещаются на передней, нижней и боковой стенке корпуса;
  • кулеры на выдув на верхней и задней стенке корпуса;

При такой схеме установки вентиляторов не нарушается естественный поток воздуха, а вентиляторы не разгоняют горячий воздух по корпусу, а выдувают его наружу. Более наглядно это показано на картинке внизу.

Не стоит недооценивать данную схему размещения вентиляторов. Она используется уже очень давно и многократно проверена. Если вы решите от нее отойти и устанавливать охлаждение по-своему, то не исключено, что вы не только не снизите температуры, но наоборот повысите их. Например, если в верхней части корпуса разместить вентиляторы не на выдув воздуха, а на вдув, то это немного снизит температуру процессора, но заметно повысит температуру видеокарты, жестких дисков и чипсета.

Используя эту схему, определите, где в вашем корпусе недостаточно вентиляторов и где вы можете их установить. Например, если в корпусе установлен только один вентилятор на выдув, то вы можете добавить несколько на вдув. Для организации хорошего охлаждения обычно достаточно 2-3 вентилятора.

Измерение посадочных мест под вентиляторы

После того как вы определились с размерами вентиляторов, нужно выбрать их правильный размер. Дело в том, что размер кулера влияет на его производительность и уровень шума, который он производит. Чем больше кулер, тем больше воздуха он может через себя пропустить за единицу времени и тем тише он работает. Поэтому не стоит экономить и всегда нужно устанавливать самые большие кулеры из тех, что помещаются в корпус вашего компьютера.

Важно понимать, что разные корпуса рассчитаны на использование кулеров разных размеров. Более того, разные места для установки могут быть рассчитаны на разный размер. Например, на передней стороне корпуса могут быть посадочные места размером 140×140 мм, а на задней стороне корпуса 120×120 мм или наоборот. Поэтому перед покупкой нужно изменить посадочные места и определить размер кулеров, которые вам необходимы.

Самый простой и надежный способ измерения посадочных мест для кулеров — это измерение между центрами крепежных отверстий. Замерив эти расстояния, вы сможете определить размер кулера опираясь на значения приведенные ниже.

Расстояние между крепежными отверстиями и размер кулера:

  • 32 мм — 40×40 мм
  • 50 мм — 60×60 мм
  • 71.5 мм — 80×80 мм
  • 82.5 мм — 92×92 мм
  • 105 мм — 120×120 мм
  • 125 мм — 140×140 мм
  • 154 мм — 200×200 мм

Определение способа подключения кулеров

Также не следует забывать о том, что кулеры имеют разные разъемы для подключения и могут подключаться либо к материнской плате компьютера либо напрямую к блоку питания.

На данный момент используется три основных варианта подключения, это:

Разъемы 3-pin и 4-pin предназначены для подключения к материнской плате, а разъем MOLEX подключается к блоку питания.

От способа подключения зависит, сможете ли вы управлять скоростью вращения вентиляторов программным способом (без использования реобаса). Нормальное управление есть только на кулерах с разъемов 4-pin. В этом случае можно установить определенные обороты в зависимости от температуры процессора. Некоторые материнские платы позволяют управлять и при подключении через 3 pin. Ну а подключение с помощью MOLEX вообще исключает управление оборотами, так как питание поступает напрямую от БП.

Поэтому желательно изучить инструкцию к материнской плате, для того чтобы определить количество разъемов под вентиляторы, количество контактов (3 или 4-pin), а также возможность управления через 3-pin подключение. Если все разъемы на материнской плате уже заняты, то дополнительные кулеры можно подключить с помощью разветвителя.

Установка вентиляторов в корпус компьютера

Непосредственно сама установка кулера в корпус компьютера не представляет ничего сложного. Нужно выключить компьютер, полностью отключить питание и снять боковую крышку.

ЭТО ИНТЕРЕСНО:  Как работает ноу фрост

Кулер устанавливается с внутренней стороны корпуса, после чего закрепляется 4 винтами с внешней стороны. Главное, не перепутать сторону, с которой кулер выдувает воздух. Для этого на его корпусе обычно есть стрелка, которая указывает направление воздуха.

После установки кулера в корпус компьютера его необходимо подключить к материнской плате (в случае разъемов 3 и 4-pin) или к блоку питания компьютера (в случае MOLEX). На разъемах 3 и 4-pin есть специальные выступы, которые не позволят подключить их неправильно.

На этом установка вентиляторов в корпус компьютера завершена, можно собирать корпус и проверять.

Источник: https://comp-security.net/%D0%BA%D0%B0%D0%BA-%D0%BF%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D1%8C%D0%BD%D0%BE-%D1%83%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%B8%D1%82%D1%8C-%D0%B2%D0%B5%D0%BD%D1%82%D0%B8%D0%BB%D1%8F%D1%82%D0%BE%D1%80/

Руководство по воздушному охлаждению компьютера

Обычные вентиляторы верой и правдой служат владельцам компьютеров уже многие годы, до сих пор оставаясь основным методом охлаждения – есть и другие, но те скорее для энтузиастов. Системы фазового перехода неприлично дорогие, а жидкостное охлаждение со всяческими трубками, помпами и резервуарами дополняется постоянными переживаниями по поводу протечек. А охлаждение в жидкостной системе всё равно происходит воздухом, только радиатор вынесен подальше.

Отбросив переживания за возраст технологии, трудно не признать, что продувка радиатора воздухом комнатной температуры – эффективный способ отвода тепла. Проблемы возникают, когда вся система не позволяет воздуху нормально циркулировать в корпусе. Данное руководство поможет оптимизировать работу системы охлаждения и тем самым повысить производительность, стабильность работы и долговечность комплектующих.

Компоновка корпуса

Большинство современных корпусов относится к ATX-компоновке: оптические приводы спереди сверху, жёсткие диски сразу под ними, материнская плата крепится к правой крышке, блок питания сзади сверху, разъёмы плат расширения выводятся на заднюю часть.

У этой схемы есть вариации: жёсткие диски могут крепиться в нижней передней части сбоку с помощью адаптеров быстрого подключения, что упрощает их снятие и установку и обеспечивает дополнительное охлаждение со стороны отсеков дисковых приводов. Иногда блок питания размещается снизу, чтобы через него не проходил выводимый тёплый воздух.

В целом подобные отличия не оказывают негативного влияния на циркуляцию воздуха, но должны учитываться при прокладке кабелей (об этом чуть далее).

Размещение кулеров

Вентиляторы обычно устанавливаются в четырёх возможных позициях: спереди, сзади, сбоку и сверху. Передние работают на вдув, охлаждая нагретые комплектующие, а задние выводят тёплый воздух из корпуса. В прошлом такой простой системы уже хватало, но с современными греющимися видеокартами (которых может быть и несколько), увесистыми комплектами оперативной памяти и разогнанными процессорами следует серьёзнее задуматься о грамотной циркуляции воздуха.

Общие правила

Не поддавайтесь соблазну выбрать корпус с наибольшим количеством вентиляторов в надежде на наилучшее охлаждение: как мы скоро узнаем, эффективность и плавность движения воздуха заметно важнее показателя CFM (объём воздушного потока в кубических футах в минуту).

Первым шагом в сборке любого компьютера является выбор корпуса, в котором есть нужные вам вентиляторы и нет ненужных.

Неплохой стартовой точкой будет корпус с тремя вертикально расположенными кулерами спереди, поскольку они будут равномерно втягивать воздух по всей поверхности.

Однако такое количество кулеров на вдуве приведёт к повышенному давлению воздуха в корпусе (подробнее о давлении читайте в конце статьи). Для выведения накапливающегося тёплого воздуха понадобятся вентиляторы на задней и верхней стенках.

Не покупайте корпус с очевидными помехами для циркуляции воздуха. К примеру, отсеки с быстрым подключением жёстких дисков – это замечательно, но если они требуют вертикальной установки накопителей, это будет серьёзно сдерживать воздушный поток.

Подумайте насчёт модульного блока питания. Возможность отключения лишних проводов сделает системный блок просторнее, а в случае апгрейда можно будет без труда добавить нужные кабели.

Не устанавливайте необязательные комплектующие: вытащите старые PCI-карты, которые уже никогда не пригодятся, дополнительное охлаждение для памяти пусть остаётся в коробке, а несколько старых жёстких дисков можно заменить на один такого же объёма. И бога ради, избавьтесь уже от флоппи-дисковода и привода для дисков.

Массивные воздуховоды на корпусе могут казаться неплохой идеей в теории, но на деле будут скорее мешать движению воздуха, так что отсоедините их, если это возможно.

Вентиляторы на боковых стенках бывают полезны, но чаще создают проблемы. Если они работают со слишком большим CFM, то сделают неэффективными кулеры на видеокарте и процессоре.

Они могут вызывать турбулентность в корпусе, затрудняя циркуляцию воздуха, а также приводить к ускоренному накоплению пыли. Использовать боковые кулеры можно только для слабого отведения воздуха, скапливающегося в «мёртвой зоне» под слотами PCIe и PCI.

Идеальным выбором для этого будет крупный кулер с небольшой скоростью вращения.

Регулярно проводите чистку корпуса! Скопление пыли представляет серьёзную угрозу для электроники, ведь пыль – это диэлектрик, к тому же, она забивает пути вывода воздуха.

Просто откройте корпус в хорошо проветриваемом месте и продуйте его компрессором (еще в продаже можно найти баллончики с сжатым воздухом для продувки) или слегка пройдитесь мягкой кистью. Пылесос не рекомендую, может отломать и засосать что-нибудь нужное.

Подобные меры останутся обязательными, по крайней мере до тех пор, пока мы все не перейдём на кулеры с самоочисткой.

Крупные, медленные кулеры обычно гораздо тише и эффективнее, так что по возможности берите их.

Окружение

Не запихивайте системный блок в какое бы то ни было подобие закрытой коробки. Не доверяйте производителям компьютерной мебели, они ничего не понимают в том, что и для чего делают.

Внутренние отсеки в столах выглядят очень удобными, но сравните это с неудобством замены перегревшихся комплектующих. Нет смысла в продумывании системы охлаждения, если в итоге вы поставите компьютер туда, где воздуху некуда будет выходить.

Как правило, конструкция стола позволяет убрать заднюю стенку отсека для компьютера – это обычно решает проблему.

Старайтесь не ставить системный блок на ковёр, иначе в корпусе будет быстрее скапливаться пыль и ворс.

Климат в вашей местности тоже стоит учитывать. Если вы живёте в жаркой области, понадобится серьёзнее отнестись к охлаждению, возможно, даже подумать насчёт водяного охлаждения. Если у вас обычно холодно, то воздух в помещении представляет особенную ценность, а значит использовать его следует с умом.

Если вы курите, настоятельно рекомендуется делать это не рядом с компьютером. Пыль и без того вредна для комплектующих, а сигаретный дым порождает худший из возможных видов пыли из-за своей влажности и химического состава. Отмывать такую липкую пыль очень сложно, и в результате электроника выходит из строя быстрее обычного.

Прокладка кабелей

Правильная прокладка кабелей требует обстоятельного планирования, а необходимое терпение найдётся не у каждого, кто радуется покупке нового железа. Хочется поскорее закрутить все болтики и подключить все провода, но торопиться не надо: время, потраченное на грамотное размещение кабелей, не затрудняющее циркуляцию воздуха, окупится с лихвой.

Начните с установки материнской платы, блока питания, накопителей и приводов. Затем, подводите кабели к устройствам, примерно обозначая их группировку. Так у вас появится представление об итоговом количестве отдельных пучков и вы поймёте, хватает ли им запаса для размещения под материнской платой. Возможно, для этого вам понадобятся дополнительные переходники.

Затем надо выбрать инструменты для стяжки кабелей, исходя из личных предпочтений. На рынке представлено много продукции для стягивания кабелей в пучки и их закрепления на корпусе.

  • Кабелепровод – это пластиковая трубка, разделённая с одной стороны. Пучок проводов помещается внутрь и трубка закрывается. При умелом использовании выглядит аккуратно, но могут возникнуть трудности, если пучок должен изгибаться.
  • Спиральная обмотка – отличный вариант. Это закрученная в виде штопора пластиковая лента, которую можно размотать и обхватить ей пучок кабелей. Очень гибкая, поэтому в некоторых случаях удобнее кабелепровода.
  • Кабельная оплётка сегодня часто встречается на проводах, идущих от блока питания, в первую очередь в материнскую плату. Можно приобрести отдельно для стяжки кабелей – выглядит восхитительно, но проделать всю работу будет непросто.
  • Кабельные хомуты обязаны иметься в достатке у каждого сборщика компьютеров. В сочетании с клейкими крепёжными площадками они делают прокладку кабелей простой и непринуждённой.
  • Хомуты-липучки (как застежки у курток) можно использовать повторно – если вы регулярно вносите изменения в систему проводов – но выглядят они уже не столь аккуратно.
  • Если вы умеете обращаться с паяльником и хотите самостоятельно укоротить/удлинить провода, удобным и надёжным средством изоляции и дополнительной фиксации будет термоусадочная плёнка. Под воздействием высокой температуры такая плёнка сжимается, крепко стягивая провода в месте контакта.

Кабели передачи данных можно без труда подвернуть под накопитель или поверх него или же поместить их в свободном соседнем отсеке. Если кабели располагаются на пути движения воздуха, закрепите их на стенке корпуса или отсека. В наши дни IDE-кабели – редкость, но если что, замените их плоские версии на круглые.

Теперь, когда все кабели на своих местах, осталось подключить устройства, не волнуясь, что провода будут мешать потокам воздуха.

Положительное или отрицательное давление?

Как ни странно, не стоит уравнивать вытяжные и втягивающие вентиляторы по CFM. Лучше выбирать между положительным и отрицательным давлением.

В конфигурации с положительным давлением на вдув ставятся кулеры с более высоким CFM.

Преимущества:

  • Воздух выходит через все мельчайшие отверстия в корпусе, заставляя каждую щёлочку вносить свой вклад в охлаждение;
  • В корпус попадает меньше пыли;
  • Полезнее для видеокарт с пассивным охлаждением.

Недостатки:

  • карты с системой прямого отвода тепла будут частично противодействовать работе кулеров;
  • Не лучший выбор для энтузиастов.

В конфигурации с отрицательным давлением CFM выше на выводе воздуха, что создаёт частичный вакуум в корпусе.

Преимущества:

  • Хорошо подходит для энтузиастов;
  • Усиливает естественную конвекцию;
  • Прямой, линейный воздушный поток;
  • Подходит для видеокарт с системой прямого отвода тепла;
  • Усиливает действие вертикального процессорного кулера.

Недостатки:

  • Пыль накапливается быстрее, поскольку воздух втягивается через все отверстия;
  • карты с пассивным охлаждением не получают никакой поддержки.

Выбирайте схему давления с учётом начинки своего компьютера. Можно купить корпус с настраиваемой скоростью вентиляторов. Можно прибегнуть у сторонним решениям для управления скоростью кулеров, но они обходятся недёшево и выглядят зачастую безвкусно. Посоветуйтесь со своим кошельком и чувством прекрасного.

Теперь, когда воздух беспрепятственно и эффективно охлаждает компьютер, вы можете быть уверены, что ваши драгоценные комплектующие прослужат долго и будут работать на полную мощь.

Источник: https://www.ProGamer.ru/hardware/air-cooling.htm

Система охлаждения компьютера — схема вентиляции, в какую сторону должен крутиться кулер

Схема охлаждения ПК: в какую сторону должны дуть вентиляторы

Воздушная система охлаждения ПК — что такое кулер

Кулер (от англ. cooler) — дословно переводится как охладитель. По существу — это устройство, призванное охлаждать нагревающийся элемент компьютера (чаще всего центральный процессор).

Кулер представляет из себя металлический радиатор с вентилятором, прогоняющим через него воздух. Чаще всего кулером называют именно вентилятор в системном блоке компьютера. Это не совсем правильно.

Вентилятор — это вентилятор, а кулер — это именно устройство (радиатор с вентилятором), охлаждающее конкретный элемент (например, процессор).

Вентиляторы, установленные в корпусе системного блока компьютера, обеспечивают общую вентиляцию в корпусе, поступление холодного воздуха и вывод горячего наружу. Тем самым происходит общее понижение температуры внутри корпуса.

Кулер, в отличие от корпусных вентиляторов, обеспечивает локальное охлаждение конкретного элемента, который сильно греется. Кулер чаще всего стоит на центральном процессоре и видеокарте. Ведь видеопроцессор греется не меньше ЦП, а порой нагрузка на него гораздо сильнее, например, во время игры.

В блоке питания тоже стоит вентилятор, который одновременно служит как для охлаждения нагревающихся элементов в блоке питания, так как продувает через него воздух, так и для общей вентиляции внутри компьютера. В простейшем варианте системы охлаждения ПК именно вентилятор внутри блока питания обеспечивает вентиляцию воздуха внутри всего корпуса.

В какую сторону должны крутиться вентиляторы в корпусе

Итак, рассмотрим схему вентиляции и охлаждения компьютера. Ведь у многих новичков при самостоятельной сборке компьютера  возникает вопрос «Куда должен дуть вентилятор» или «В какую сторону должен крутиться кулер». На самом деле это действительно важно, ведь правильно организованная вентиляция внутри компьютера — залог его надежной работы.

Холодный воздух подается в корпус из передней нижней части (1). Это нужно учитывать и при чистке компьютера от пыли. Нужно обязательно пропылесосить место, где засасывается воздух внутрь компьютера. Воздушный поток постепенно нагреваясь поднимается вверх и в верхней задней части корпуса выдувается через блок питания (2) уже горячий воздух.

В случае большого числа греющихся элементов внутри корпуса (например, мощная видеокарта или несколько видеокарт, большое количество жестких дисков и т.д.

) или малого объема свободного пространства внутри корпуса для увеличения воздушного потока и повышения эффективности охлаждения в корпус устанавливают дополнительные вентиляторы. Лучше устанавливать вентиляторы с большим диаметром.

Они обеспечивают больший поток воздуха при меньших оборотах, а следовательно эффективнее и тише, чем вентиляторы с меньшим диаметром.

При установке вентиляторов следует учитывать направление, в котором они дуют. Иначе можно не только не улучшить охлаждение компьютера, но и ухудшить его. При большом количестве жестких дисков, либо при наличии дисков, работающих на высоких скоростях (от 7200 об/мин), следует установить дополнительный вентилятор в переднюю часть корпуса (3) так, чтобы он продувал жесткие диски.

При наличии большого количества греющихся элементов (мощная видеокарта, несколько видеокарт, большое количество плат, установленных в компьютер) или при нехватке свободного пространства внутри корпуса рекомендуется установить дополнительный вентилятор в задней верхней части корпуса (4). Этот вентилятор должен выдувать воздух наружу. Таким образом увеличится воздушный поток, проходящий через корпус и охлаждающий все внутренние элементы компьютера.

Нельзя устанавливать задний вентилятор так, чтобы он дул внутрь корпуса! Так нарушится нормальная циркуляция внутри ПК. На некоторых корпусах возможно установить вентилятор на боковую крышку. В этом случае вентилятор должен крутиться так, чтобы он всасывал воздух внутрь корпуса.

Ни в коем случае нельзя, чтобы он выдувал его наружу, иначе будет недостаточно охлаждаться верхняя часть компьютера, в частности блок питания, материнская плата и процессор.

В какую сторону должен дуть вентилятор на кулере

Повторюсь, что кулер предназначен для локального охлаждения конкретного элемента. Поэтому здесь не учитывается общая циркуляция воздуха в корпусе. Вентилятор на кулере должен продувать воздух через радиатор, тем самым охлаждая его. То есть вентилятор на кулере процессора должен дуть в сторону процессора.

На некоторых моделях кулеров вентилятор устанавливается на вынесенный радиатор. В этом случае лучше его ставить так, чтобы воздушный поток направлялся в строну задней стенки корпуса либо вверх в сторону блока питания.

На большинстве мощных видеокарт кулер представляет из себя радиатор и крыльчатку, которая не вдувает воздух сверху внутрь, а гонит его по кругу. То есть в этом случае через одну половину радиатора воздух засасывается, а через другую выдувается.

Источник: https://www.comp-web-pro.ru/sistema-oxlazhdeniya-kompyutera-sxema-ventilyacii-v-kakuyu-storonu-dolzhen-krutitsya-kuler.html

Понравилась статья? Поделиться с друзьями:
Дом холодильников